acid-phosphatase and phosphoric-acid

acid-phosphatase has been researched along with phosphoric-acid* in 3 studies

Other Studies

3 other study(ies) available for acid-phosphatase and phosphoric-acid

ArticleYear
Reduction of the degradation activity of umami-enhancing purinic ribonucleotide supplement in miso by the targeted suppression of acid phosphatases in the Aspergillus oryzae starter culture.
    International journal of food microbiology, 2013, Sep-02, Volume: 166, Issue:2

    Miso (fermented soybean paste) is a traditional Japanese fermented food, and is now used worldwide. The solid-state culture of filamentous fungus, Aspergillus oryzae, grown on rice is known as rice-koji, and is important as a starter for miso fermentation because of its prominent hydrolytic enzyme activities. Recently, commercial miso products have been supplemented with purinic ribonucleotides, such as inosine monophosphate (IMP) and guanine monophosphate, to enhance the characteristic umami taste of glutamate in miso. Because the purinic ribonucleotides are degraded by enzymes such as acid phosphatases in miso, heat inactivation is required prior to the addition of these flavorings. However, heat treatment is a costly process and reduces the quality of miso. Therefore, an approach to lower acid phosphatase activities in koji culture is necessary. Transcriptional analysis using an A. oryzae KBN8048 rice-koji culture showed that eight of the 13 acid phosphatase (aph) genes were significantly down-regulated by the addition of phosphoric acid in the preparation of the culture in a concentration-dependent manner, while aphC expression was markedly up-regulated under the same conditions. The eight down-regulated genes might be under the control of the functional counterpart of the Saccharomyces cerevisiae transcriptional activator Pho4, which specifically regulates phosphatase genes in response to the ambient phosphate availability. However, the regulatory mechanism of aphC was not clear. The IMP dephosphorylation activities in rice-koji cultures of KBN8048 and the aphC deletion mutant (ΔaphC) were reduced by up to 30% and 70%, respectively, in cultures with phosphoric acid, while protease and amylase activity, which is important for miso fermentation, was minimally affected. The miso products fermented using the rice-koji cultures of KBN8048 and ΔaphC prepared with phosphoric acid had reductions in IMP dephosphorylation activity of 80% and 90%, respectively, without any adverse effects on amylase and protease activities. Thus, preparing the A. oryzae rice-koji culture under phosphate-sufficient conditions preferentially produces a fermentation starter of miso exhibiting low purinic ribonucleotide dephosphorylation activity. Moreover, aphC is a potential breeding target to reduce purinic ribonucleotide degradation activity further in commercial miso products.

    Topics: Acid Phosphatase; Aspergillus oryzae; Down-Regulation; Enzyme Activation; Enzyme Inhibitors; Food Microbiology; Glycine max; Mutation; Oryza; Phosphoric Acids; Soy Foods

2013
Effects of vibration in forced posture on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra.
    PloS one, 2013, Volume: 8, Issue:11

    Epidemiological studies have shown a relatively strong association between occupational lower back pain (LBP) and long-term exposure to vibration. However, there is limited knowledge of the impact of vibration and sedentariness on bone metabolism of the lumbar vertebra and the mechanism of bone-derived LBP. The aim of this study was to investigate the effects of vibration in forced posture (a seated posture) on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra, and provide a scientific theoretical basis for the mechanism of bone-derived LBP, serum levels of Ca(2+), (HPO4)(2-), tartrate-resistant acid phosphatase (TRAP), bone-specific alkaline phosphatase (BALP), and bone gla protein (BGP),the pathological changes and biomechanics of lumbar vertebra of New Zealand white rabbits were studied. The results demonstrate that both forced posture and vibration can cause pathological changes to the lumbar vertebra, which can result in bone-derived LBP, and vibration combined with a seated posture could cause further damage to bone metabolism. Serological changes can be used as early markers for clinical diagnosis of bone-derived LBP.

    Topics: Acid Phosphatase; Alkaline Phosphatase; Animals; Biomechanical Phenomena; Calcium; Female; Isoenzymes; Low Back Pain; Lumbar Vertebrae; Male; Organ Specificity; Osteocalcin; Phosphoric Acids; Posture; Rabbits; Restraint, Physical; Tartrate-Resistant Acid Phosphatase; Vibration

2013
Determination of acid phosphatase in biological fluids using a new substrate, 2,6-dichloro-4-nitrophenyl phosphate.
    Clinica chimica acta; international journal of clinical chemistry, 1987, Sep-30, Volume: 168, Issue:2

    A new substrate, 2,6-dichloro-4-nitrophenyl phosphate (DCNP-P), is used for the determination of acid phosphatase (EC 3.1.3.2) in serum and urine. It was hydrolyzed by acid phosphatase to 2,6-dichloro-4-nitrophenol (DCNP) and phosphoric acid. At a pH of 4.5-6.0, the absorption of DCNP liberated by acid phosphatase was much higher than that of p-nitrophenol, which is commonly used as an aglycone in the acid phosphatase assay. By using DCNP-P as a substrate for acid phosphatase activity, determinations can be made without the colour reaction which requires the addition of an alkaline solution, and can be determined by the rate assay that does not require measurement of sample blanks in serum or urine. This method using DCNP-P is highly sensitive and is the most suitable for the rate assay of acid phosphatase activity in biological fluids.

    Topics: Acid Phosphatase; Humans; Hydrogen-Ion Concentration; Kinetics; Nitrophenols; Phosphoric Acids; Spectrophotometry

1987