acid-phosphatase and daidzein

acid-phosphatase has been researched along with daidzein* in 5 studies

Other Studies

5 other study(ies) available for acid-phosphatase and daidzein

ArticleYear
Zinc modifies the effect of phyto-oestrogens on osteoblast and osteoclast differentiation in vitro.
    The British journal of nutrition, 2012, Nov-28, Volume: 108, Issue:10

    Osteoblast and osteoclast activity is disrupted in post-menopausal osteoporosis. Thus, to fully address this imbalance, therapies should reduce bone resorption and promote bone formation. Dietary factors such as phyto-oestrogens and Zn have beneficial effects on osteoblast and osteoclast activity. However, the effect of combinations of these factors has not been widely studied. We therefore examined the effect of coumestrol, daidzein and genistein in the presence or absence of zinc sulphate (Zn) on osteoclast and osteoblast activity. Osteoclast differentiation and bone resorption were significantly reduced by coumestrol (10- 7 m), daidzein (10- 5 m) and genistein (10- 7 m); and this direct anti-osteoclastic action was unaffected by Zn (10- 5 m). In addition, Zn augmented the inhibitory effect of phyto-oestrogens on the osteoblast-derived stimulus for osteoclast formation, significantly reducing the ratio of receptor activator of NF-κB ligand (RANKL)-to-osteoprotegerin mRNA expression in human osteoblast. We then examined the effect of these compounds on osteoblast activity. Mineralisation was enhanced by coumestrol (10- 5 to 10- 7 m), daidzein (10- 5 to 10- 6 m) and genistein (10- 5 m); and Zn significantly augmented this response. Zn and phyto-oestrogens also significantly enhanced alkaline phosphatase activity and Runt-related transcription factor 2 (Runx2) mRNA expression. On the other hand, Zn blunted phyto-oestrogen-induced type I collagen and osteocalcin expression and suppressed coumestrol and daidzein-stimulated osterix expression. Zn may therefore modify the anabolic action of phyto-oestrogens, promoting characteristics associated with early rather than late stages of osteoblast differentiation. Our data suggest that while Zn enhances the anti-osteoclastic effect of phyto-oestrogens, it may limit aspects of their anabolic action on bone matrix formation.

    Topics: Acid Phosphatase; Animals; Bone Resorption; Cell Line; Cell Proliferation; Collagen Type I; Core Binding Factor Alpha 1 Subunit; Coumestrol; Gene Expression Regulation; Genistein; Humans; Isoenzymes; Isoflavones; Ligands; Macrophages; Mice; NF-kappa B; Osteoblasts; Osteoclasts; Osteoprotegerin; Phytoestrogens; Sp7 Transcription Factor; Tartrate-Resistant Acid Phosphatase; Transcription Factors; Zinc

2012
Puerarin exerted anti-osteoporotic action independent of estrogen receptor-mediated pathway.
    Journal of nutritional science and vitaminology, 2012, Volume: 58, Issue:3

    Puerarin, a daidzein-8-C glucoside, is the major isoflavonoid in Kudzu (Pueraria lobata), and is unique in that it contains C-C conjugated glucose at position 8 of the isoflavonoid structure. A puerarin diet at a dose of 5 mg/kg b.w./d to fed ovariectomized mice for 2 mo diminished the urinary deoxypyridinoline, a typical bone-degradation product. Since the bone absorption marker, serum tartarate-resistant acid phosphatase (TRAP) activity of puerarin-fed mice decreased but the bone formation marker, osteocalcin level, did not alter, the puerarin diet was proved to specifically depress the bone absorption, but not the overall bone metabolism. In accordance with that results, the femur structure of puerarin-fed mice was restored compared with that of puerarin-free diet mice. The atrophied uterine due to low estrogen (E2) level after ovariectomy was not restored by the puerarin diet, suggesting that puerarin exerted the anti-osteoporotic action through a non estrogen receptor (ER) mediated-pathway, in vivo. The growth of an ER-positive human breast cancer cell, MCF-70, was not enhanced by puerarin, suggesting that puerarin did not show estrogen-like action on MCF-7 cells, even at a ten thousand times higher concentration than that of E2. Furthermore, ICI182,780 (ICI), an estrogen antagonist, suppressed the enhanced growth of MCF-7 cells by E2, but not that by puerarin. In an ER-binding assay, puerarin was proved not to bind to ERα or β, or if all, extremely weakly, although daidzein, an aglycon of puerarin, showed a little stronger binding compared with puerarin. All these results strongly indicate that puerarin exerts its anti-osteoprotic action independently of the ER-mediated pathway.

    Topics: Acid Phosphatase; Amino Acids; Animals; Breast Neoplasms; Cell Proliferation; Diet; Estradiol; Female; Fulvestrant; Humans; Isoflavones; MCF-7 Cells; Mice; Osteocalcin; Osteoporosis; Ovariectomy; Pueraria; Receptors, Estrogen

2012
Impact of 4-methylbenzylidene camphor, daidzein, and estrogen on intact and osteotomized bone in osteopenic rats.
    The Journal of endocrinology, 2011, Volume: 211, Issue:2

    The study investigated the influence of 4-methylbenzylidene camphor (4-MBC), daidzein, and estradiol-17β-benzoate (E(2)) on either intact or osteotomized cancellous bone in ovariectomized (Ovx) rats. Three-month old Ovx rats were fed with soy-free (SF) diet over 8 weeks; thereafter, bilateral transverse metaphyseal osteotomy of tibia was performed and rats were divided into groups: rats fed with SF diet and SF diet supplemented with 4-MBC (200 mg), daidzein (50 mg), or E(2) (0.4 mg) per kilogram body weight. After 5 or 10 weeks, computed tomographical, biomechanical, histological, and ashing analyses were performed in lumbar spine and tibia of 12 rats from each group. 4-MBC and E(2) improved bone parameters in lumbar spine and tibia, were not favorable for osteotomy healing, and decreased serum osteocalcin level. However, daidzein improved bone parameters to a lesser extent and facilitated osteotomy healing. For lumbar spine, the bone mineral density was 338±9, 346±5, 361±6, and 360±5 mg/cm(3) in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. For tibia, the yield load was 98±5, 114±3, 90±2, and 52±4 N in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. Serum daidzein was 54±6 ng/ml in daidzein group and equol was not detected. Alp and Igf1 genes were down-regulated in callus after daidzein and E(2) compared with 4-MBC (week 5). The response of bone tissue and serum markers of bone metabolism could be ordered: daidzein<4-MBC

    Topics: Acid Phosphatase; Alkaline Phosphatase; Animals; Biomechanical Phenomena; Bone and Bones; Bone Density; Bone Diseases, Metabolic; Bony Callus; Camphor; Diet; Estrogens; Female; Gene Expression; Insulin-Like Growth Factor I; Isoenzymes; Isoflavones; Lumbar Vertebrae; Osteocalcin; Osteotomy; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Tartrate-Resistant Acid Phosphatase; Tibia; Tomography, X-Ray Computed

2011
Evaluation of the preventive effect of isoflavone extract on bone loss in ovariectomized rats.
    Bioscience, biotechnology, and biochemistry, 2004, Volume: 68, Issue:5

    To examine a potential role for soybean phytoestrogens in postmenopausal bone loss, twenty-four 12-week-old Sprague-Dawley rats were divided randomly into 4 groups and given controlled diets for 16 weeks. The treatment groups were as followed: sham operated, ovariectomized (OVX) control, OVX + isoflavone extract (6.25 g/kg), and OVX + 17beta-estradiol (4 mg/kg). OVX treatments reduced femoral and fourth lumbar vertebral bone density and mineral content (p<0.01), decreased uterine weight (p<0.01), accelerated body weight increases (p<0.05), and increased the activities (p<0.01) of both serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). Supplementation with isoflavone prevented the losses of bone density and mineral content caused by OVX (p<0.01). Although both isoflavone and 17beta-estradiol exhibited similar bone-sparing ability on the OVX-induced bone loss, the effect of isoflavone was not the same as that of 17beta-estradiol on the serum ALP and TRAP, body weight increase, and uterine weight change. We concluded that dietary supplementation with soybean isoflavone can prevent postmenopausal bone loss via a different mechanism of estrogen in OVX rats.

    Topics: Acid Phosphatase; Alkaline Phosphatase; Animals; Bone Density; Calcium; Eating; Estradiol; Female; Genistein; Glycine max; Humans; Isoenzymes; Isoflavones; Organ Size; Osteoporosis; Osteoporosis, Postmenopausal; Ovariectomy; Plant Extracts; Rats; Rats, Sprague-Dawley; Tartrate-Resistant Acid Phosphatase

2004
Down-regulation of osteoclast differentiation by daidzein via caspase 3.
    Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2002, Volume: 17, Issue:4

    Phytoestrogens are plant-derived compounds with estrogen-like activity. Phytoestrogen-rich diets may prevent postmenopausal osteoporosis and these molecules maintain bone mass in ovariectomized animals. We compared the effects of the isoflavone daidzein, which has no action on tyrosine kinases, and 17beta-estradiol on the development and activity of osteoclasts in vitro. Nonadherent porcine bone marrow cells were cultured on dentine slices or on culture slides in the presence of 10-8 M of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], with or without 10(-8) M of daidzein, 10(-8) M of 17beta-estradiol for 9-11 days. Multinucleated tartrate-resistant acid phosphatase-positive (TRAP+) cells that resorbed bone (osteoclasts) developed in the presence of 1,25(OH)2D3. The number of osteoclasts formed in response to 1,25(OH)2D3 was reduced by 58 +/- 8% by daidzein and 52 +/- 5% by estrogen (p < 0.01); these effects were reversed by 10-6 M of ICI 182,780. The area resorbed by mature osteoclasts was reduced by 39 +/- 5% by daidzein and 42 +/- 6% by estradiol (p < 0.01). Both compounds also inhibited the 1,25(OH)2D3-induced differentiation of osteoclast progenitors (mononucleated TRAP+ cells), 53 +/- 8% by daidzein and 50 +/- 7% by estradiol (p < 0.05). Moreover, daidzein and estradiol promoted caspase-8 and caspase-3 cleavage and DNA fragmentation of monocytic bone marrow cells. Caspase-3 cleavage was reversed by 10-8 M of ICI 182,780. Both compounds up-regulated the expression of nuclear estrogen receptors ER-alpha and ER-beta. Thus, daidzein, at the same concentration as 17beta-estradiol, inhibits osteoclast differentiation and activity. This may be caused by, at least in part, greater apoptosis of osteoclast progenitors mediated by ERs.

    Topics: Acid Phosphatase; Animals; Apoptosis; Bone Marrow Cells; Calcitriol; Caspase 3; Caspases; Cell Differentiation; Cells, Cultured; Down-Regulation; Estradiol; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens, Non-Steroidal; Female; Fulvestrant; Isoenzymes; Isoflavones; Osteoclasts; Receptors, Estrogen; Swine; Tartrate-Resistant Acid Phosphatase

2002