acid-phosphatase and calcipotriene

acid-phosphatase has been researched along with calcipotriene* in 1 studies

Other Studies

1 other study(ies) available for acid-phosphatase and calcipotriene

ArticleYear
1,25(OH)2D3 and calcipotriol (MC903) have similar effects on the induction of osteoclast-like cell formation in human bone marrow cultures.
    Biochemical and biophysical research communications, 1990, Sep-28, Volume: 171, Issue:3

    MC903 is a novel analogue of 1,25(OH)2D3 which exhibits similar inhibitory effects on cell proliferation and like, 1,25(OH)2D3, stimulates synthesis of osteoblast specific proteins by osteoblast-like cells in vitro. It is less active than 1,25(OH)2D3 in causing hypercalcemia in vivo. Since 1,25(OH)2D3 is known to stimulate bone resorption and increase the number of osteoclasts in several systems (in vivo and in vitro) we examined the effects of MC903 on the formation of osteoclast-like cells in vitro. As reported previously 1,25(OH)2D3 promoted the formation of multinucleated cells with phenotypic and functional characteristics of osteoclasts from adult human bone-marrow cultures at concentrations between 10(-8)M to 10(-12)M. Higher doses consistently suppressed multinucleated cell formation to values seen in the absence of 1,25(OH)2D3. Cells cultured in the presence of MC903 or for three weeks consistently induced the formation of multinucleated cells at concentrations 10(-8)M to 10(-12)M. As seen with 1,25(OH)2D3, MC903 also inhibited multinucleated cell formation at very high concentrations (10(-6)M). In two separate experiments MC903 appeared to be more potent than 1,25(OH)2D3 at lower concentrations (10(-10)M - 10(-12)M). From this study we conclude that MC903 is at least as potent as 1,25(OH)2D3 in inducing the formation human osteoclast-like cells in vitro. The decreased ability of MC903 to induce hypercalcemia in vivo is not therefore a result of a less marked effect than 1,25(OH)2D3 on the regulation of osteoclast formation.

    Topics: Acid Phosphatase; Bone Marrow; Bone Marrow Cells; Calcitriol; Cell Differentiation; Cells, Cultured; Humans; Kinetics; Osteoclasts

1990