acid-phosphatase has been researched along with baicalein* in 2 studies
2 other study(ies) available for acid-phosphatase and baicalein
Article | Year |
---|---|
Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis.
In bone remodeling, an imbalance caused by increased bone resorption over bone formation leads to adult skeletal diseases such as osteoporosis. Therefore, the development of anti-resorptive agents has still gained more interest. In this study, using cell-based assay systems in RAW264.7 murine macrophage cells, we found that baicalein significantly inhibited the receptor activator of NF-kappaB ligand (RANKL)-induced tartrate-resistance acid phosphatase (TRAP) activity and the formation of multinucleated osteoclasts in a dose-dependent manner. Interestingly, baicalein inhibited RANKL-induced activation of signaling molecules (Akt, ERK/MAP kinase and NF-kappaB) and mRNA expression of osteoclast-associated genes (TRAP, matrix metalloproteinase 9 and c-Src) and another transcription factors (c-Fos, Fra-2 and NFATc1). In addition, baicalein inhibited the bone resorptive activity of mature osteoclasts by inducing apoptosis. The inhibitory effects of baicalein on the formation of mouse bone marrow macrophage-derived osteoclasts and their bone resorptive activity were also observed. In conclusion, although further studies are needed to determine its biological efficacy and precise mechanism in bone, the present results demonstrated that baicalein has a potential to inhibit osteoclast differentiation and induce mature osteoclast apoptosis. Topics: Acid Phosphatase; Animals; Antioxidants; Apoptosis; Blotting, Western; Bone Resorption; Cell Differentiation; Cell Line; Dose-Response Relationship, Drug; Flavanones; Macrophages; Mice; Mitogen-Activated Protein Kinases; NF-kappa B; Osteoclasts; Osteogenesis; RANK Ligand; Transcription Factors | 2008 |
Effect of baicalein on experimental prostatic hyperplasia in rats and mice.
We determined the effect of baicalein on prostatic hyperplasia in experimental animal models. Prostatic hyperplasia was induced by testosterone propionate in mice and castrated rats and by transplantation of homologous strain fetal mice urogenital sinus in mice. With the histopathological examination, the efficacy of baicalein on prostate hyperplasia in experimental animals was evaluated by the activity of serum acid phosphatase (ACP) and the following norm of the prostate gland: the volume, wet weight, wet weight index, dry weight index, DNA contents and prostatic epithelial height and cavity diameter. Results showed that baicalein at doses of 260 and 130 mg/kg administrated intragastrically (i.g.) significantly inhibited prostatic hyperplasia in castrated rats induced by testosterone propionate compared with the negative control group (p<0.01). Baicalein at doses of 520 and 260 mg/kg (i.g.) also significantly inhibited prostatic hyperplasia in mice induced by transplantation of homologous strain fetal mouse urogenital sinus and by testosterone propionate (p<0.01). These results suggested that baicalein has an inhibitory effect on prostatic hyperplasia in experimental animals. Topics: Acid Phosphatase; Animals; Castration; Cell Division; Depression, Chemical; Disease Models, Animal; Dose-Response Relationship, Drug; Flavanones; Male; Mice; Organ Size; Prostatic Hyperplasia; Rats; Rats, Sprague-Dawley; Testosterone Propionate | 2004 |