acetylcysteine and trifluoperazine

acetylcysteine has been researched along with trifluoperazine in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's1 (14.29)2.80

Authors

AuthorsStudies
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M1
Ding, WX; Liu, J; Ong, CN; Shen, HM; Yang, CF1
Chen, W; Feng, L; Su, H; Zheng, X1

Reviews

1 review(s) available for acetylcysteine and trifluoperazine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for acetylcysteine and trifluoperazine

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
    Disease models & mechanisms, 2023, 03-01, Volume: 16, Issue:3

    Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries

2023
Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG(2) cells: mitochondria serve as the main target.
    Free radical biology & medicine, 2001, Jan-01, Volume: 30, Issue:1

    Topics: Acetylcysteine; Apoptosis; Carcinoma, Hepatocellular; Caspase 3; Caspase Inhibitors; Caspases; Cyclic N-Oxides; Cyclosporine; Cytochrome c Group; DNA Fragmentation; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Glutathione; Humans; In Situ Nick-End Labeling; Kinetics; Liver Neoplasms; Membrane Potentials; Mitochondria; Signal Transduction; Sodium Selenite; Spin Labels; Superoxides; Trifluoperazine; Tumor Cells, Cultured

2001
Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.
    Life sciences, 2016, Jul-01, Volume: 156

    Topics: 3T3-L1 Cells; Acetylcysteine; Adipocytes; Animals; Antioxidants; Apoptosis; Bongkrekic Acid; Cell Proliferation; Diterpenes; Glutathione; Mice; Mitochondrial Membranes; Reactive Oxygen Species; Trifluoperazine

2016