acetylcysteine has been researched along with sapropterin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Duquaine, D; Kalyanaraman, B; Rajagopalan, S; Vásquez-Vivar, J; Whitsett, J | 1 |
Cho, Y; Choi, HJ; Hwang, O; Lee, SY | 1 |
Boontje, NM; de Crom, R; de Waard, MC; Dekkers, DH; Duncker, DJ; Kuster, DW; Lamers, JM; van der Velden, J; van Haperen, R | 1 |
Fujita, M; Iwasaka, T; Okazaki, T; Otani, H; Shimazu, T; Yoshioka, K | 1 |
Ferriero, DM; Juul, SE | 1 |
1 review(s) available for acetylcysteine and sapropterin
Article | Year |
---|---|
Pharmacologic neuroprotective strategies in neonatal brain injury.
Topics: Acetylcysteine; Allopurinol; Antioxidants; Ascorbic Acid; Biopterins; Erythropoietin; Excitatory Amino Acid Antagonists; Free Radical Scavengers; Fructose; Humans; Hypoxia-Ischemia, Brain; Infant, Extremely Premature; Infant, Newborn; Infant, Premature; Infant, Premature, Diseases; Melatonin; Memantine; Neuroprotective Agents; Nitric Oxide Synthase Type III; Resveratrol; Stilbenes; Topiramate; Vitamin E; Xenon | 2014 |
4 other study(ies) available for acetylcysteine and sapropterin
Article | Year |
---|---|
Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants.
Topics: Acetylcholine; Acetylcysteine; Animals; Antioxidants; Aorta, Thoracic; Arteriosclerosis; Biopterins; Calcimycin; Cholesterol; Diet; Endothelium, Vascular; Free Radical Scavengers; Hyperlipidemias; Ionophores; Male; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Oxidation-Reduction; Oxygen; Pteridines; Pterins; Rabbits; Sulfhydryl Compounds; Vasodilator Agents | 2002 |
Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson's disease.
Topics: 3,4-Dihydroxyphenylacetic Acid; Acetylcysteine; Animals; Benzoquinones; Biopterins; Cell Death; Cell Line; Cytosol; Dimethyl Fumarate; Dopamine; Drug Resistance; Enzyme Inhibitors; Fumarates; Ketanserin; Lipid Peroxidation; Membrane Glycoproteins; Membrane Transport Modulators; Membrane Transport Proteins; Mice; Monoamine Oxidase Inhibitors; Neurons; Oxidative Stress; Parkinson Disease; Substantia Nigra; Vesicular Biogenic Amine Transport Proteins; Vesicular Monoamine Transport Proteins | 2005 |
Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction.
Topics: Acetylcysteine; Actin Cytoskeleton; Animals; Antioxidants; Arginine; Biopterins; Disease Models, Animal; Exercise Therapy; Female; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardial Contraction; Myocardial Infarction; Myocardium; Nitric Oxide Synthase Type III; Oxidative Stress; Phosphorylation; Physical Exertion; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Superoxides; Time Factors; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Pressure; Ventricular Remodeling | 2009 |
Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart.
Topics: Acetylcysteine; Animals; Ascorbic Acid; Biopterins; Diabetes Mellitus, Experimental; Disease Models, Animal; Male; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide Synthase; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2011 |