acetylcysteine has been researched along with fludarabine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Acquaah-Mensah, GK; Biswal, SS; Datta, K; Kehrer, JP | 1 |
Enosawa, S; Haga, S; Ohnuma, N; Ozaki, M; Terui, K | 1 |
4 other study(ies) available for acetylcysteine and fludarabine
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells.
Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Carboxylic Acids; Caspase 3; Caspase Inhibitors; Caspases; Ceramides; Chromatography, Thin Layer; DNA Fragmentation; Dose-Response Relationship, Drug; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Fumonisins; Glutathione; Humans; Image Processing, Computer-Assisted; Leukemia, Lymphocytic, Chronic, B-Cell; Phosphatidylserines; Sphingomyelins; Tumor Cells, Cultured; Vidarabine | 2000 |
Hypoxia/re-oxygenation-induced, redox-dependent activation of STAT1 (signal transducer and activator of transcription 1) confers resistance to apoptotic cell death via hsp70 induction.
Topics: Acetylcysteine; Animals; Apoptosis; Cell Hypoxia; Cells, Cultured; DNA-Binding Proteins; Enzyme Inhibitors; Fibroblasts; Gene Expression Regulation; Hepatocytes; HSP70 Heat-Shock Proteins; Janus Kinase 2; Male; MAP Kinase Signaling System; Oxidation-Reduction; Oxidative Stress; Oxygen; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred Lew; STAT1 Transcription Factor; Trans-Activators; Tyrphostins; Vidarabine | 2004 |