acetylcysteine and candesartan

acetylcysteine has been researched along with candesartan in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (44.44)29.6817
2010's4 (44.44)24.3611
2020's1 (11.11)2.80

Authors

AuthorsStudies
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M1
Benedict, CR; Katagiri, T; Pakala, R; Watanabe, T1
Gao, J; Gessner, R; Köttgen, E; Niessen, H; Ohlemeyer, C; Roos, D; Wu, S1
Heidland, A; Kanase, N; Lakner, U; Rutkowski, P; Schmid, U; Schupp, N; Stopper, H1
Miyake, S; Nagai, N; Narimatsu, T; Ozawa, Y; Tsubota, K1

Reviews

1 review(s) available for acetylcysteine and candesartan

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

8 other study(ies) available for acetylcysteine and candesartan

ArticleYear
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
    Disease models & mechanisms, 2023, 03-01, Volume: 16, Issue:3

    Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries

2023
Mildly oxidized low-density lipoprotein acts synergistically with angiotensin II in inducing vascular smooth muscle cell proliferation.
    Journal of hypertension, 2001, Volume: 19, Issue:6

    Topics: Acetylcysteine; Aldehydes; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antioxidants; Benzimidazoles; Biphenyl Compounds; Cardiovascular Diseases; Cell Division; Cells, Cultured; DNA; Drug Synergism; Flavonoids; Humans; Hydrogen Peroxide; Lipoproteins, LDL; Lysophosphatidylcholines; Muscle, Smooth, Vascular; Probucol; Rabbits; Receptor, Angiotensin, Type 1; Tetrazoles; Tyrphostins

2001
Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes.
    Free radical biology & medicine, 2005, Dec-15, Volume: 39, Issue:12

    Topics: Acetylcysteine; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antioxidants; Benzimidazoles; Biphenyl Compounds; Cells, Cultured; Dose-Response Relationship, Drug; Heart Ventricles; HL-60 Cells; Humans; Myocytes, Cardiac; NADPH Oxidases; Onium Compounds; Oxidation-Reduction; Rats; Rats, Wistar; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Tetrazoles; Time Factors; Transcription Factor AP-1

2005
Angiotensin II-induced genomic damage in renal cells can be prevented by angiotensin II type 1 receptor blockage or radical scavenging.
    American journal of physiology. Renal physiology, 2007, Volume: 292, Issue:5

    Topics: Acetylcysteine; alpha-Tocopherol; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Cell Line; Cell Nucleus; Comet Assay; DNA Damage; Dose-Response Relationship, Drug; Flow Cytometry; Free Radical Scavengers; Humans; Imidazoles; Kidney; Pyridines; Rats; Reactive Oxygen Species; Swine; Tetrazoles

2007
Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina.
    Free radical biology & medicine, 2014, Volume: 71

    Topics: Acetylcysteine; Angiotensin II Type 1 Receptor Blockers; Animals; Antioxidants; Apoptosis; Benzimidazoles; Biphenyl Compounds; Dose-Response Relationship, Drug; Fas Ligand Protein; Gene Expression Regulation; Light; Losartan; Male; Mice; Mice, Inbred BALB C; Proto-Oncogene Proteins c-fos; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Retinal Degeneration; Retinal Photoreceptor Cell Outer Segment; Signal Transduction; Tetrazoles; Valine; Valsartan

2014