acetylcysteine has been researched along with bortezomib in 40 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 18 (45.00) | 29.6817 |
2010's | 18 (45.00) | 24.3611 |
2020's | 4 (10.00) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Adams, J; Chau, V; Elliott, PJ; Lightcap, ES; McCormack, TA; Pien, CS | 1 |
An, WG; Blagosklonny, MV; Hwang, SG; Trepel, JB | 1 |
Elliott, PJ; Ross, JS | 1 |
Schenkein, D | 1 |
Boehncke, WH; Elliott, PJ; Zollner, TM | 1 |
Luker, GD; Luker, KE; Pica, CM; Piwnica-Worms, D; Song, J | 1 |
Dai, Y; Grant, S; Pei, XY | 1 |
Daniel, KG; Dou, QP; Kazi, A; Kuhn, DJ | 1 |
Chizzolini, C; Dayer, JM; Fineschi, S; Guerne, PA; Reith, W | 1 |
Berges, C; Daniel, V; Fuchs, D; Höh, A; Miltz, M; Naujokat, C; Opelz, G; Ovens, J; Sadeghi, M; Wieczorek, H | 1 |
Anselmino, A; Atzori, C; Cargnel, A; Mazza, F; Piccinini, M; Rinaudo, MT; Tronconi, E; Valerio, A | 1 |
Blau, IW; Busse, A; Driessen, C; Keilholz, U; Kraus, M; Na, IK; Rietz, A; Scheibenbogen, C; Thiel, E | 1 |
Berges, C; Daniel, V; Fuchs, D; Haberstock, H; Miltz, M; Naujokat, C; Opelz, G; Sadeghi, M | 1 |
Caligaris-Cappio, F; Cozza, S; Ferrarini, M; Nerini-Molteni, S; Sitia, R | 1 |
Chen, D; Dou, QP; Landis-Piwowar, KR; Milacic, V; Yang, H | 1 |
Tsukamoto, S; Yokosawa, H | 1 |
Böll, B; Chalaris, A; Eichenauer, DA; Engert, A; Hansen, HP; Krell, HW; Reiners, KS; Rose-John, S; Simhadri, VL; Simhadri, VR; Vahdat, AM; von Strandmann, EP; Wiegmann, K | 1 |
Alden, CL; Cardoza, K; Csizmadia, E; Csizmadia, V; Fedyk, ER; Gallacher, M; Kadambi, VJ; O'Brien, L; Raczynski, A; Silverman, L; Simpson, C | 1 |
David, CS; Patel, R; Rajagopalan, G; Theuer, JE; Tilahun, AY | 1 |
Bui, TN; Efuet, ET; Keyomarsi, K | 1 |
Li, J; Wu, XM; Zhang, DY | 1 |
Abe, M; Amou, H; Fujii, S; Harada, T; Hiasa, M; Kagawa, K; Matsumoto, T; Miki, H; Nakamura, S; Nakano, A; Oda, A; Ozaki, S; Takeuchi, K; Watanabe, T | 1 |
Azakir, BA; Di Fulvio, S; Kinter, J; Sinnreich, M | 1 |
Al-Husein, B; Al-Shabrawey, M; Bollag, WB; Choudhary, V; Davis, M; Dong, Z; El Gaish, M; Kaddour-Djebbar, I; Kumar, MV; Lakshmikanthan, V; Shirley, R; Zhong, R | 1 |
Andreu, AL; Barreiro, E; de Kier Joffé, ED; Fermoselle, C; García-Arumí, E; Puente-Maestu, L; Puig-Vilanova, E; Tejedor, A; Urtreger, AJ | 1 |
Chan, SM; Feng, W; Huang, M; Li, MX; Majeti, R; Mitchell, BS; Thomas, D | 1 |
Bader, M; Grassner, L; Knight, AM; Loprinzi, CL; Paz, J; Podratz, JL; Staff, NP; Trushina, E; Windebank, AJ | 1 |
Han, J; Heo, HJ; Jeong, SH; Jeong, YJ; Kim, HK; Kim, N; Ko, KS; Ko, TH; Lee, SR; Rhee, BD; Song, IS; Youm, JB | 1 |
Andreu, AL; Barreiro, E; Chacón-Cabrera, A; García-Arumí, E; Marin-Corral, J; Mateu, X; Molina, L; Puente-Maestu, L; Puig-Vilanova, E; Salazar-Degracia, A | 1 |
Coppo, P; Froissart, A | 1 |
Khan, NA; Saleem, S; Siddiqui, R | 1 |
Bousquet-Dubouch, MP; Burlet-Schiltz, O; Chaoui, K; Gonzalez-de-Peredo, A; Marcellin, M; Matondo, M; Monsarrat, B | 1 |
Coppo, P; Joly, BS; Veyradier, A | 1 |
Gómez-Almaguer, D; Gómez-De León, A; Villela-Martínez, LM; Yáñez-Reyes, JM | 1 |
Lee, BH; Nicola, AV; Schneider, SM | 1 |
Galstyan, GM; Kalinina, II; Klebanova, EE; Maschan, AA | 1 |
12 review(s) available for acetylcysteine and bortezomib
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
The proteasome: a new target for novel drug therapies.
Topics: Acetylcysteine; Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Carcinoma, Lewis Lung; Clinical Trials, Phase I as Topic; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Disease Models, Animal; Humans; Multienzyme Complexes; Neoplasms; Proteasome Endopeptidase Complex; Pyrazines | 2001 |
Proteasome inhibitors in the treatment of B-cell malignancies.
Topics: Acetylcysteine; Animals; Boronic Acids; Bortezomib; Cell Cycle Proteins; Clinical Trials as Topic; Drug Screening Assays, Antitumor; Enzymes; Gene Expression Regulation; Hodgkin Disease; Humans; Leukemia, B-Cell; Leupeptins; Lymphoma, B-Cell; Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Mice; Multiple Myeloma; Neoplasm Proteins; NF-kappa B; Oncogene Proteins; Peptide Hydrolases; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Substrate Specificity; Transcription Factors; Treatment Outcome | 2002 |
Proteasome inhibition: a new anti-inflammatory strategy.
Topics: Acetylcysteine; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Arthritis, Rheumatoid; Asthma; Boronic Acids; Bortezomib; Clinical Trials as Topic; Cysteine Endopeptidases; Disease Models, Animal; Humans; Inflammation; Lysine; Models, Biological; Models, Chemical; Multienzyme Complexes; Multiple Sclerosis; Neoplasms; NF-kappa B; Peptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Psoriasis; Pyrazines; Reperfusion Injury | 2003 |
Anti-angiogenic and anti-tumor properties of proteasome inhibitors.
Topics: Acetylcysteine; Angiogenesis Inhibitors; Antineoplastic Agents; Boronic Acids; Bortezomib; Humans; Neoplasms; Neovascularization, Pathologic; Protease Inhibitors; Proteasome Inhibitors; Pyrazines | 2005 |
Natural compounds with proteasome inhibitory activity for cancer prevention and treatment.
Topics: Acetylcysteine; Animals; Anticarcinogenic Agents; Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Curcumin; Humans; Neoplasms; Pentacyclic Triterpenes; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Triterpenes; Ubiquitin | 2008 |
Targeting the proteasome pathway.
Topics: Acetylcysteine; Animals; Antineoplastic Agents; Biological Products; Boronic Acids; Bortezomib; Drug Delivery Systems; Drug Discovery; Humans; Lactones; Neoplasms; Peptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyrroles; Structure-Activity Relationship; Ubiquitin; Ubiquitin-Activating Enzymes; Ubiquitins | 2009 |
[Classification and synthesis of ubiquitin-proteasome inhibitor].
Topics: Acetylcysteine; Antineoplastic Agents; Boronic Acids; Bortezomib; Cysteine Proteinase Inhibitors; Dipeptides; Humans; Multiple Myeloma; Peptides, Cyclic; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Ubiquitin | 2009 |
Treatment of thrombotic thrombocytopenic purpura beyond therapeutic plasma exchange.
Topics: Acetylcysteine; ADAM Proteins; ADAMTS13 Protein; Bortezomib; Clinical Trials as Topic; Cyclophosphamide; Cyclosporine; Humans; Plasma Exchange; Platelet Aggregation Inhibitors; Prognosis; Purpura, Thrombotic Thrombocytopenic; Recombinant Proteins; Recurrence; Risk; Rituximab; Splenectomy; Steroids; Treatment Outcome; Vincristine; von Willebrand Factor | 2015 |
Thrombotic thrombocytopenic purpura.
Topics: Acetylcysteine; ADAMTS13 Protein; Adult; Age of Onset; Antibodies, Monoclonal; Autoantibodies; Bortezomib; Female; Humans; Immunologic Factors; Male; Mutation; Plasma Exchange; Purpura, Thrombotic Thrombocytopenic; Sex Characteristics; Single-Domain Antibodies | 2017 |
Advances in the treatment of thrombotic thrombocytopenic purpura: repurposed drugs and novel agents.
Topics: Acetylcysteine; ADAMTS13 Protein; Adrenal Cortex Hormones; Bortezomib; Drug Repositioning; Humans; Purpura, Thrombotic Thrombocytopenic; Rituximab; Single-Domain Antibodies | 2020 |
Viral entry and the ubiquitin-proteasome system.
Topics: Acetylcysteine; Animals; Antiviral Agents; Bortezomib; Host Microbial Interactions; Humans; Leupeptins; Nucleocapsid; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proteolysis; Ubiquitin; Virion; Virus Internalization; Virus Physiological Phenomena; Viruses | 2021 |
28 other study(ies) available for acetylcysteine and bortezomib
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Proteasome inhibition measurements: clinical application.
Topics: Acetylcysteine; Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Cysteine Endopeptidases; Humans; In Vitro Techniques; Kinetics; Male; Multienzyme Complexes; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Sensitivity and Specificity; Spectrometry, Fluorescence | 2000 |
Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition.
Topics: Acetylcysteine; Acrylates; Amino Acid Chloromethyl Ketones; Apoptosis; Boronic Acids; Bortezomib; Calpain; Cathepsins; Cell Division; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Cysteine Endopeptidases; Drug Synergism; Genes, p53; Humans; Jurkat Cells; Leupeptins; Multienzyme Complexes; Neoplasm Proteins; Neoplasms; Oligopeptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Tumor Cells, Cultured; Tumor Suppressor Protein p53; U937 Cells | 2000 |
Imaging 26S proteasome activity and inhibition in living mice.
Topics: Acetylcysteine; Animals; Boronic Acids; Bortezomib; Coleoptera; Cysteine Proteinase Inhibitors; Genes, Reporter; HeLa Cells; Humans; Kinetics; Leupeptins; Luciferases; Luminescent Measurements; Male; Mice; Mice, Nude; Molecular Biology; Peptide Hydrolases; Proteasome Endopeptidase Complex; Pyrazines; Transfection; Ubiquitin; Xenograft Model Antitumor Assays | 2003 |
Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors.
Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Blotting, Western; Boronic Acids; Bortezomib; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cell Survival; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cytosol; Dose-Response Relationship, Drug; Enzyme Inhibitors; Free Radical Scavengers; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Intracellular Membranes; Membrane Glycoproteins; Membrane Potentials; Mitochondria; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Oxidative Stress; Oxygen; Protease Inhibitors; Proteins; Proteoglycans; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Reactive Oxygen Species; Sodium Oxybate; Syndecan-1; Syndecans; Tumor Suppressor Proteins; Vorinostat; X-Linked Inhibitor of Apoptosis Protein | 2004 |
Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts.
Topics: Acetylcysteine; Anthracenes; Boronic Acids; Bortezomib; Collagen Type I; Dose-Response Relationship, Drug; Down-Regulation; Extracellular Matrix; Fibroblasts; Fibrosis; Genes, jun; Humans; JNK Mitogen-Activated Protein Kinases; Leupeptins; Matrix Metalloproteinase 1; Phosphorylation; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-jun; Pyrazines; RNA Polymerase II; RNA, Messenger; Scleroderma, Systemic; Skin; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta; Up-Regulation | 2006 |
Proteasomal chymotrypsin-like peptidase activity is required for essential functions of human monocyte-derived dendritic cells.
Topics: Acetylcysteine; Apoptosis; Boronic Acids; Bortezomib; Cell Differentiation; Chymases; Cysteine Proteinase Inhibitors; Dendritic Cells; Endocytosis; Humans; Interleukin-12; Lymphocyte Activation; Monocytes; Oligopeptides; Pinocytosis; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Receptors, Cell Surface | 2007 |
Detection of a proteasome in Pneumocystis carinii and its modulation by specific proteasome inhibitors.
Topics: Acetylcysteine; Animals; Boronic Acids; Bortezomib; Cell Line; Coumarins; Genes, Fungal; HIV Protease Inhibitors; Humans; Lopinavir; Models, Animal; Oligopeptides; Pneumocystis carinii; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Pyrimidinones; Rats | 2006 |
Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits.
Topics: Acetylcysteine; Apoptosis; B-Lymphocytes; Boronic Acids; Bortezomib; Cell Line, Tumor; Cysteine Endopeptidases; Drug Screening Assays, Antitumor; Humans; Interferon-gamma; Lymphoma; Multienzyme Complexes; Multiple Myeloma; Protease Inhibitors; Proteasome Endopeptidase Complex; Protein Subunits; Pyrazines | 2008 |
Proteasome inhibition suppresses essential immune functions of human CD4+ T cells.
Topics: Acetylcysteine; Antigens, CD; Apoptosis; Boronic Acids; Bortezomib; CD4-Positive T-Lymphocytes; Cell Cycle; Cell Cycle Proteins; Cell Proliferation; Cells, Cultured; Cytokines; Dose-Response Relationship, Immunologic; Humans; Immunosuppressive Agents; Lymphocyte Activation; NFATC Transcription Factors; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Translocation, Genetic; Tumor Suppressor Protein p53 | 2008 |
Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib.
Topics: Acetylcysteine; Activating Transcription Factor 4; Antineoplastic Agents; Antioxidants; Boronic Acids; Bortezomib; Cell Death; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Glutathione; Homeostasis; Humans; Multiple Myeloma; Neoplasm Proteins; Oxidation-Reduction; Protease Inhibitors; Pyrazines; Transcription Factor CHOP; Tumor Cells, Cultured | 2008 |
TNF-alpha-converting enzyme (TACE/ADAM17)-dependent loss of CD30 induced by proteasome inhibition through reactive oxygen species.
Topics: Acetylcysteine; ADAM Proteins; ADAM17 Protein; Antibodies, Monoclonal; Boronic Acids; Bortezomib; Cell Line, Tumor; Humans; Hydroxamic Acids; Ki-1 Antigen; Proteasome Inhibitors; Pyrazines; Reactive Oxygen Species; Sulfonamides; Syndecan-1 | 2010 |
Effect of proteasome inhibitors with different chemical structures on the ubiquitin-proteasome system in vitro.
Topics: Acetylcysteine; Animals; Blotting, Western; Boronic Acids; Bortezomib; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Immunohistochemistry; Inhibitory Concentration 50; Mice; Mice, Inbred BALB C; Oligopeptides; PC12 Cells; Peripheral Nervous System Diseases; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Rats; Ubiquitin | 2010 |
Detrimental effect of the proteasome inhibitor, bortezomib in bacterial superantigen- and lipopolysaccharide-induced systemic inflammation.
Topics: Acetylcysteine; Animals; Apoptosis; Boronic Acids; Bortezomib; Cysteine Proteinase Inhibitors; Cytokines; HLA-DR3 Antigen; Lipopolysaccharides; Liver; Mice; Mice, Transgenic; NF-kappa B; Proteasome Inhibitors; Pyrazines; Superantigens; Systemic Inflammatory Response Syndrome | 2010 |
Semi-high throughput method of measuring proteasome inhibition in vitro and in cultured cells.
Topics: Acetylcysteine; Animals; Biological Assay; Boronic Acids; Bortezomib; Cell Extracts; Cells, Cultured; Chymotrypsin; High-Throughput Screening Assays; Inhibitory Concentration 50; Leupeptins; Mice; Models, Biological; Oligopeptides; Ornithine Decarboxylase; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Recombinant Fusion Proteins; Time Factors | 2011 |
Delayed treatment with vitamin C and N-acetyl-L-cysteine protects Schwann cells without compromising the anti-myeloma activity of bortezomib.
Topics: Acetylcysteine; Animals; Antineoplastic Agents; Antioxidants; Ascorbic Acid; Autophagy; Boronic Acids; Bortezomib; Cell Line; Endoplasmic Reticulum; Free Radical Scavengers; Multiple Myeloma; Neuroprotective Agents; Peripheral Nervous System Diseases; Pyrazines; Rats; Schwann Cells | 2011 |
Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells.
Topics: Acetylcysteine; Alleles; Amino Acid Substitution; Antineoplastic Agents; Boronic Acids; Bortezomib; Cells, Cultured; Cysteine Proteinase Inhibitors; Distal Myopathies; Dysferlin; Humans; Membrane Proteins; Muscle Fibers, Skeletal; Muscle Proteins; Muscular Atrophy; Muscular Dystrophies, Limb-Girdle; Mutation, Missense; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proteolysis; Pyrazines; RNA, Messenger | 2012 |
Diltiazem enhances the apoptotic effects of proteasome inhibitors to induce prostate cancer cell death.
Topics: Acetylcysteine; Apoptosis; Blotting, Western; Boronic Acids; Bortezomib; Calcium; Calcium Channel Blockers; Clinical Trials as Topic; Diltiazem; Dose-Response Relationship, Drug; Drug Interactions; Drug Synergism; Endoplasmic Reticulum Chaperone BiP; Humans; Male; Prostatic Neoplasms; Protease Inhibitors; Pyrazines; Transfection; Tumor Cells, Cultured | 2012 |
Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice.
Topics: Acetylcysteine; Animals; Antioxidants; Boronic Acids; Bortezomib; Cachexia; Diaphragm; Electron Transport Chain Complex Proteins; Female; Lung Neoplasms; MAP Kinase Signaling System; Mice; Mitochondria; Mitochondrial Diseases; Mitogen-Activated Protein Kinases; Muscle Strength; Muscle, Skeletal; NF-kappa B; Oxidative Stress; Pyrazines | 2013 |
Role of cysteine 288 in nucleophosmin cytoplasmic mutations: sensitization to toxicity induced by arsenic trioxide and bortezomib.
Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Boronic Acids; Bortezomib; Cell Nucleolus; Cell Proliferation; Cysteine; Cytosol; Drug Resistance, Neoplasm; Flow Cytometry; Free Radical Scavengers; Humans; Leukemia, Myeloid, Acute; Mutation; Nuclear Proteins; Nucleophosmin; Oxides; Pyrazines; Reactive Oxygen Species; Tryptophan; Tumor Cells, Cultured | 2013 |
Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons.
Topics: Acetylcysteine; Animals; Antineoplastic Agents; Axonal Transport; Boronic Acids; Bortezomib; Cell Death; Cells, Cultured; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Embryo, Mammalian; Ganglia, Spinal; Microscopy, Electron, Transmission; Microtubules; Neurons; Organ Culture Techniques; Pyrazines; Rats; Rats, Sprague-Dawley; Statistics, Nonparametric; Time Factors | 2013 |
Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells.
Topics: 2-Methoxyestradiol; Acetylcysteine; Apoptosis; Boronic Acids; Bortezomib; Calcium; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Synergism; Estradiol; Humans; Mitochondria; Mitogen-Activated Protein Kinase Kinases; Pyrazines; Reactive Oxygen Species | 2013 |
Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure.
Topics: Acetylcysteine; Animals; Bortezomib; Diaphragm; Heart Failure; Humans; Mitochondria; Monocrotaline; Muscle, Skeletal; NF-kappa B; Oxidative Stress; Proteolysis; Rats | 2016 |
The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype.
Topics: Acanthamoeba castellanii; Acetylcysteine; Bortezomib; Brain; Cell Adhesion; Cells, Cultured; Chlorhexidine; Cysteine Proteinase Inhibitors; Endothelium, Vascular; Genotype; Humans; Lactones; Leupeptins; Proteasome Inhibitors | 2016 |
Determination of differentially regulated proteins upon proteasome inhibition in AML cell lines by the combination of large-scale and targeted quantitative proteomics.
Topics: Acetylcysteine; Apoptosis; Apoptosis Regulatory Proteins; Bortezomib; Cell Cycle; Cell Cycle Proteins; Cell Differentiation; Cell Line, Tumor; Computational Biology; Gene Expression Profiling; Gene Expression Regulation, Leukemic; Gene Ontology; Heat-Shock Proteins; Humans; Interleukins; Leukocytes; Leupeptins; Molecular Sequence Annotation; Phosphorylation; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Isoforms; Signal Transduction; Transcription Factors; Tumor Suppressor Protein p53 | 2017 |
[Treatment of thrombotic thrombocytopenic purpura].
Topics: Acetylcysteine; Bortezomib; Child; Cyclosporine; Humans; Plasma Exchange; Purpura, Thrombotic Thrombocytopenic; Rituximab | 2021 |