acetoin and nad
acetoin has been researched along with nad in 26 studies
Research
Studies (26)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (7.69) | 18.7374 |
1990's | 6 (23.08) | 18.2507 |
2000's | 6 (23.08) | 29.6817 |
2010's | 10 (38.46) | 24.3611 |
2020's | 2 (7.69) | 2.80 |
Authors
Authors | Studies |
---|---|
Masuda, H; Muraki, H | 1 |
de Graef, MR; Neijssel, OM; Snoep, JL; Teixeira de Mattos, MJ | 1 |
Lubbers, F; Neijssel, OM; Snoep, JL; Teixeira de Mattos, MJ; van Bommel, M | 1 |
Adler, L; Ansell, R; Björkqvist, S; Lidén, G | 1 |
Boumerdassi, H; Corrieu, G; Desmazeaud, M; Monnet, C | 1 |
Diviès, C; Huang, DQ; Phalip, V; Prévost, H; Schmitt, P; Vasseur, C | 1 |
de Vos, WM; Hugenholtz, J; Kleerebezem, M; Lopez de Felipe, F | 1 |
Biosca, JA; Fernández, MR; González, E; Larroy, C; Parés, X; Pericàs, MA; Solà, L | 1 |
Corrieu, G; El Attar, A; Monnet, C | 1 |
Biosca, JA; Fernández, MR; González, E; Larroy, C; Parés, X | 1 |
Hahn-Hägerdal, B; Wahlbom, CF | 1 |
GOEDDE, HW; HOLZER, H; KOHLHAW, G; SCHREIBER, G | 1 |
Adler, L; Ansell, R; Blomberg, A; Gustafsson, L; Norbeck, J; Valadi, A; Valadi, H | 1 |
Jyoti, BD; Suresh, AK; Venkatesh, KV | 1 |
Biosca, JA; Calam, E; Dequin, S; Fernández, MR; González, E; Marco, D; Parés, X; Sumoy, L | 1 |
Fergestad, EM; Holo, H; Jönsson, M; Mathiesen, G; Mehmeti, I; Nes, IF | 1 |
Camarasa, C; Celton, M; Dequin, S; Fromion, V; Goelzer, A | 1 |
Guan, X; Hu, K; Li, Y; Lin, H; Sha, L; Shen, Y; Sun, S; Xu, Q; Zhan, S; Zhang, L | 1 |
Bao, T; Li, H; Rao, Z; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, R; Zhang, X | 1 |
Chen, J; Gao, X; Li, S; Liu, L; Xu, N | 1 |
Bao, T; Rao, Z; Xu, Z; Yang, S; Yang, T; Zhang, R; Zhang, X; Zhao, X | 1 |
Bao, T; Rao, Z; Yang, S; Yang, T; Zhang, X; Zhao, X | 1 |
Liang, K; Shen, CR | 1 |
Tefft, NM; TerAvest, MA | 1 |
Bae, SJ; Hahn, JS; Jin, H; Kim, BG; Kim, J; Kim, S; Park, HJ | 1 |
Ford, K; Tefft, NM; TerAvest, MA | 1 |
Other Studies
26 other study(ies) available for acetoin and nad
Article | Year |
---|---|
Enzymatic determination of butane-2,3-diol in wines.
Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; NAD; Sarcina; Stereoisomerism; Wine | 1976 |
Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios.
Topics: Acetates; Acetoin; Acetyltransferases; Aerobiosis; Carbon Dioxide; Enterococcus faecalis; Glucose; NAD; Oxidation-Reduction; Pyruvate Dehydrogenase Complex; Pyruvates | 1992 |
The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex.
Topics: Acetoin; Aerobiosis; Anaerobiosis; Enterococcus faecalis; Fermentation; Glucose; Hydrogen-Ion Concentration; Kinetics; Lactates; Lactic Acid; NAD; Pyruvate Dehydrogenase Complex; Thioctic Acid | 1993 |
Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
Topics: Acetoin; Aerobiosis; Anaerobiosis; Butylene Glycols; Fermentation; Gene Deletion; Genes, Fungal; Glycerol; Glycerolphosphate Dehydrogenase; Mutation; NAD; Oxidation-Reduction; Saccharomyces cerevisiae | 1997 |
Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose.
Topics: Acetoin; Base Sequence; Diacetyl; DNA Primers; Glucose; Kinetics; L-Lactate Dehydrogenase; Lactococcus lactis; Mutation; NAD | 1997 |
Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides.
Topics: Acetoin; Citric Acid; Diacetyl; Leuconostoc; NAD; Xylose | 1997 |
Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
Topics: Acetoin; Aerobiosis; Cloning, Molecular; Diacetyl; Fermentation; Flavin-Adenine Dinucleotide; Gene Expression Regulation, Bacterial; Genetic Engineering; Glucose; Lactococcus lactis; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Nisin; Promoter Regions, Genetic; Recombinant Proteins; Streptococcus mutans | 1998 |
Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene.
Topics: Acetoin; Alcohol Oxidoreductases; Amino Acid Sequence; Chromatography, Gas; Electrophoresis, Agar Gel; Enzyme Induction; Genes, Fungal; Isoelectric Focusing; Kinetics; Metalloproteins; Molecular Sequence Data; Mutation; NAD; Phylogeny; Saccharomyces cerevisiae; Sequence Alignment; Stereoisomerism; Substrate Specificity; Zinc | 2000 |
Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
Topics: Acetates; Acetoin; Butylene Glycols; Carbon Dioxide; Cheese; Citric Acid; DNA, Ribosomal; Ethanol; Formates; L-Lactate Dehydrogenase; Lactates; Lactococcus lactis; Lactose; Mutation; NAD; RNA, Ribosomal, 16S | 2000 |
Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase.
Topics: Acetoin; Alcohol Oxidoreductases; Amino Acid Motifs; Amino Acid Sequence; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Enzyme Stability; Gene Targeting; Genes, Fungal; Hydrogen-Ion Concentration; Kinetics; NAD; Saccharomyces cerevisiae; Substrate Specificity | 2001 |
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
Topics: Acetoin; Anaerobiosis; Biomass; Bioreactors; Chromatography, Liquid; Ethanol; Fermentation; Furaldehyde; Models, Chemical; NAD; Saccharomyces cerevisiae; Sensitivity and Specificity; Xylitol; Xylose | 2002 |
[BIOSYNTHESIS OF ACETOIN IN PIG HEART MUSCLE].
Topics: Acetoin; Animals; Carbon Isotopes; Coenzyme A; Ketones; Metabolism; Myocardium; NAD; Oxidoreductases; Research; Swine | 1963 |
NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1).
Topics: Acetoin; Aerobiosis; Anaerobiosis; Base Sequence; DNA, Fungal; Gene Deletion; Gene Expression; Genes, Fungal; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating); Glycerolphosphate Dehydrogenase; Isoenzymes; NAD; Oxidation-Reduction; Oxidative Stress; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins | 2004 |
Effect of preculturing conditions on growth of Lactobacillus rhamnosus on medium containing glucose and citrate.
Topics: Acetoin; Biomass; Citric Acid; Culture Media; Diacetyl; Glucose; Lactobacillus; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Oxidation-Reduction; Oxygen | 2004 |
Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol.
Topics: Acetoin; Aerobiosis; Alcohol Oxidoreductases; Amino Acid Substitution; Anaerobiosis; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Fermentation; Gene Deletion; Genetic Engineering; Hydrogen-Ion Concentration; Kinetics; Mutation; NAD; Oxidoreductases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Alignment; Substrate Specificity; Sugar Alcohol Dehydrogenases | 2010 |
Transcriptome, proteome, and metabolite analyses of a lactate dehydrogenase-negative mutant of Enterococcus faecalis V583.
Topics: Acetoin; Electrophoresis, Gel, Two-Dimensional; Enterococcus faecalis; Fermentation; Formates; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Glucose; L-Lactate Dehydrogenase; Metabolome; Microarray Analysis; NAD; Proteome | 2011 |
A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
Topics: Acetates; Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Fermentation; Mitochondria; Models, Biological; NAD; NADP; Oxidation-Reduction; Pentose Phosphate Pathway; Saccharomyces cerevisiae | 2012 |
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Cations; Cloning, Molecular; Coenzymes; Enzyme Activators; Escherichia coli; Gene Expression; Hydrogen-Ion Concentration; Kinetics; Metals; Molecular Weight; NAD; Recombinant Proteins; Serratia marcescens; Substrate Specificity; Temperature | 2014 |
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis.
Topics: Acetoin; Alcohol Oxidoreductases; Bacillus subtilis; Bacterial Proteins; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Water | 2014 |
Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering.
Topics: Acetoin; Acetolactate Synthase; Butylene Glycols; Candida glabrata; Carbon; Carboxy-Lyases; Ethanol; Metabolic Engineering; Metabolic Networks and Pathways; NAD; Niacin; Plasmids; Promoter Regions, Genetic | 2014 |
Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
Topics: Acetoin; Alcohol Oxidoreductases; Bacillus subtilis; Biocatalysis; Butylene Glycols; Fermentation; Metabolic Engineering; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Regeneration | 2014 |
Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
Topics: Acetoin; Bacillus subtilis; Biotechnology; Butylene Glycols; Fermentation; Glucose 1-Dehydrogenase; Glucosephosphate Dehydrogenase; Metabolic Engineering; NAD; NADP | 2015 |
Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Escherichia coli; Fermentation; Klebsiella pneumoniae; Metabolic Engineering; NAD; NADP; Oxidation-Reduction | 2017 |
Reversing an Extracellular Electron Transfer Pathway for Electrode-Driven Acetoin Reduction.
Topics: Acetoin; Alcohol Oxidoreductases; Electrodes; Electron Transport; Electrons; NAD; NADH, NADPH Oxidoreductases; Shewanella | 2019 |
High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate.
Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; NAD; Saccharomyces cerevisiae | 2021 |
NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1.
Topics: Acetoin; Electron Transport; Electrons; NAD; Oxidation-Reduction; Oxidoreductases; Shewanella | 2023 |