acetoin and nad

acetoin has been researched along with nad in 26 studies

Research

Studies (26)

TimeframeStudies, this research(%)All Research%
pre-19902 (7.69)18.7374
1990's6 (23.08)18.2507
2000's6 (23.08)29.6817
2010's10 (38.46)24.3611
2020's2 (7.69)2.80

Authors

AuthorsStudies
Masuda, H; Muraki, H1
de Graef, MR; Neijssel, OM; Snoep, JL; Teixeira de Mattos, MJ1
Lubbers, F; Neijssel, OM; Snoep, JL; Teixeira de Mattos, MJ; van Bommel, M1
Adler, L; Ansell, R; Björkqvist, S; Lidén, G1
Boumerdassi, H; Corrieu, G; Desmazeaud, M; Monnet, C1
Diviès, C; Huang, DQ; Phalip, V; Prévost, H; Schmitt, P; Vasseur, C1
de Vos, WM; Hugenholtz, J; Kleerebezem, M; Lopez de Felipe, F1
Biosca, JA; Fernández, MR; González, E; Larroy, C; Parés, X; Pericàs, MA; Solà, L1
Corrieu, G; El Attar, A; Monnet, C1
Biosca, JA; Fernández, MR; González, E; Larroy, C; Parés, X1
Hahn-Hägerdal, B; Wahlbom, CF1
GOEDDE, HW; HOLZER, H; KOHLHAW, G; SCHREIBER, G1
Adler, L; Ansell, R; Blomberg, A; Gustafsson, L; Norbeck, J; Valadi, A; Valadi, H1
Jyoti, BD; Suresh, AK; Venkatesh, KV1
Biosca, JA; Calam, E; Dequin, S; Fernández, MR; González, E; Marco, D; Parés, X; Sumoy, L1
Fergestad, EM; Holo, H; Jönsson, M; Mathiesen, G; Mehmeti, I; Nes, IF1
Camarasa, C; Celton, M; Dequin, S; Fromion, V; Goelzer, A1
Guan, X; Hu, K; Li, Y; Lin, H; Sha, L; Shen, Y; Sun, S; Xu, Q; Zhan, S; Zhang, L1
Bao, T; Li, H; Rao, Z; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, R; Zhang, X1
Chen, J; Gao, X; Li, S; Liu, L; Xu, N1
Bao, T; Rao, Z; Xu, Z; Yang, S; Yang, T; Zhang, R; Zhang, X; Zhao, X1
Bao, T; Rao, Z; Yang, S; Yang, T; Zhang, X; Zhao, X1
Liang, K; Shen, CR1
Tefft, NM; TerAvest, MA1
Bae, SJ; Hahn, JS; Jin, H; Kim, BG; Kim, J; Kim, S; Park, HJ1
Ford, K; Tefft, NM; TerAvest, MA1

Other Studies

26 other study(ies) available for acetoin and nad

ArticleYear
Enzymatic determination of butane-2,3-diol in wines.
    Journal of the science of food and agriculture, 1976, Volume: 27, Issue:4

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; NAD; Sarcina; Stereoisomerism; Wine

1976
Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios.
    Journal of general microbiology, 1992, Volume: 138, Issue:10

    Topics: Acetates; Acetoin; Acetyltransferases; Aerobiosis; Carbon Dioxide; Enterococcus faecalis; Glucose; NAD; Oxidation-Reduction; Pyruvate Dehydrogenase Complex; Pyruvates

1992
The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex.
    Journal of general microbiology, 1993, Volume: 139 Pt 6

    Topics: Acetoin; Aerobiosis; Anaerobiosis; Enterococcus faecalis; Fermentation; Glucose; Hydrogen-Ion Concentration; Kinetics; Lactates; Lactic Acid; NAD; Pyruvate Dehydrogenase Complex; Thioctic Acid

1993
Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Applied and environmental microbiology, 1997, Volume: 63, Issue:1

    Topics: Acetoin; Aerobiosis; Anaerobiosis; Butylene Glycols; Fermentation; Gene Deletion; Genes, Fungal; Glycerol; Glycerolphosphate Dehydrogenase; Mutation; NAD; Oxidation-Reduction; Saccharomyces cerevisiae

1997
Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose.
    Applied and environmental microbiology, 1997, Volume: 63, Issue:6

    Topics: Acetoin; Base Sequence; Diacetyl; DNA Primers; Glucose; Kinetics; L-Lactate Dehydrogenase; Lactococcus lactis; Mutation; NAD

1997
Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides.
    Applied microbiology and biotechnology, 1997, Volume: 47, Issue:6

    Topics: Acetoin; Citric Acid; Diacetyl; Leuconostoc; NAD; Xylose

1997
Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Journal of bacteriology, 1998, Volume: 180, Issue:15

    Topics: Acetoin; Aerobiosis; Cloning, Molecular; Diacetyl; Fermentation; Flavin-Adenine Dinucleotide; Gene Expression Regulation, Bacterial; Genetic Engineering; Glucose; Lactococcus lactis; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Nisin; Promoter Regions, Genetic; Recombinant Proteins; Streptococcus mutans

1998
Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene.
    The Journal of biological chemistry, 2000, Nov-17, Volume: 275, Issue:46

    Topics: Acetoin; Alcohol Oxidoreductases; Amino Acid Sequence; Chromatography, Gas; Electrophoresis, Agar Gel; Enzyme Induction; Genes, Fungal; Isoelectric Focusing; Kinetics; Metalloproteins; Molecular Sequence Data; Mutation; NAD; Phylogeny; Saccharomyces cerevisiae; Sequence Alignment; Stereoisomerism; Substrate Specificity; Zinc

2000
Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
    The Journal of dairy research, 2000, Volume: 67, Issue:4

    Topics: Acetates; Acetoin; Butylene Glycols; Carbon Dioxide; Cheese; Citric Acid; DNA, Ribosomal; Ethanol; Formates; L-Lactate Dehydrogenase; Lactates; Lactococcus lactis; Lactose; Mutation; NAD; RNA, Ribosomal, 16S

2000
Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase.
    Chemico-biological interactions, 2001, Jan-30, Volume: 130-132, Issue:1-3

    Topics: Acetoin; Alcohol Oxidoreductases; Amino Acid Motifs; Amino Acid Sequence; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Enzyme Stability; Gene Targeting; Genes, Fungal; Hydrogen-Ion Concentration; Kinetics; NAD; Saccharomyces cerevisiae; Substrate Specificity

2001
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    Biotechnology and bioengineering, 2002, Apr-20, Volume: 78, Issue:2

    Topics: Acetoin; Anaerobiosis; Biomass; Bioreactors; Chromatography, Liquid; Ethanol; Fermentation; Furaldehyde; Models, Chemical; NAD; Saccharomyces cerevisiae; Sensitivity and Specificity; Xylitol; Xylose

2002
[BIOSYNTHESIS OF ACETOIN IN PIG HEART MUSCLE].
    Biochemische Zeitschrift, 1963, Oct-14, Volume: 339

    Topics: Acetoin; Animals; Carbon Isotopes; Coenzyme A; Ketones; Metabolism; Myocardium; NAD; Oxidoreductases; Research; Swine

1963
NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1).
    Current genetics, 2004, Volume: 45, Issue:2

    Topics: Acetoin; Aerobiosis; Anaerobiosis; Base Sequence; DNA, Fungal; Gene Deletion; Gene Expression; Genes, Fungal; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating); Glycerolphosphate Dehydrogenase; Isoenzymes; NAD; Oxidation-Reduction; Oxidative Stress; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins

2004
Effect of preculturing conditions on growth of Lactobacillus rhamnosus on medium containing glucose and citrate.
    Microbiological research, 2004, Volume: 159, Issue:1

    Topics: Acetoin; Biomass; Citric Acid; Culture Media; Diacetyl; Glucose; Lactobacillus; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Oxidation-Reduction; Oxygen

2004
Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol.
    Applied and environmental microbiology, 2010, Volume: 76, Issue:3

    Topics: Acetoin; Aerobiosis; Alcohol Oxidoreductases; Amino Acid Substitution; Anaerobiosis; Butylene Glycols; Cloning, Molecular; Conserved Sequence; Fermentation; Gene Deletion; Genetic Engineering; Hydrogen-Ion Concentration; Kinetics; Mutation; NAD; Oxidoreductases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Alignment; Substrate Specificity; Sugar Alcohol Dehydrogenases

2010
Transcriptome, proteome, and metabolite analyses of a lactate dehydrogenase-negative mutant of Enterococcus faecalis V583.
    Applied and environmental microbiology, 2011, Volume: 77, Issue:7

    Topics: Acetoin; Electrophoresis, Gel, Two-Dimensional; Enterococcus faecalis; Fermentation; Formates; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Glucose; L-Lactate Dehydrogenase; Metabolome; Microarray Analysis; NAD; Proteome

2011
A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Metabolic engineering, 2012, Volume: 14, Issue:4

    Topics: Acetates; Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Fermentation; Mitochondria; Models, Biological; NAD; NADP; Oxidation-Reduction; Pentose Phosphate Pathway; Saccharomyces cerevisiae

2012
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Applied microbiology and biotechnology, 2014, Volume: 98, Issue:3

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Cations; Cloning, Molecular; Coenzymes; Enzyme Activators; Escherichia coli; Gene Expression; Hydrogen-Ion Concentration; Kinetics; Metals; Molecular Weight; NAD; Recombinant Proteins; Serratia marcescens; Substrate Specificity; Temperature

2014
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis.
    Metabolic engineering, 2014, Volume: 23

    Topics: Acetoin; Alcohol Oxidoreductases; Bacillus subtilis; Bacterial Proteins; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Water

2014
Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering.
    Microbial cell factories, 2014, Apr-13, Volume: 13, Issue:1

    Topics: Acetoin; Acetolactate Synthase; Butylene Glycols; Candida glabrata; Carbon; Carboxy-Lyases; Ethanol; Metabolic Engineering; Metabolic Networks and Pathways; NAD; Niacin; Plasmids; Promoter Regions, Genetic

2014
Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    PloS one, 2014, Volume: 9, Issue:7

    Topics: Acetoin; Alcohol Oxidoreductases; Bacillus subtilis; Biocatalysis; Butylene Glycols; Fermentation; Metabolic Engineering; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Regeneration

2014
Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Biotechnology journal, 2015, Volume: 10, Issue:8

    Topics: Acetoin; Bacillus subtilis; Biotechnology; Butylene Glycols; Fermentation; Glucose 1-Dehydrogenase; Glucosephosphate Dehydrogenase; Metabolic Engineering; NAD; NADP

2015
Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Journal of industrial microbiology & biotechnology, 2017, Volume: 44, Issue:12

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; Escherichia coli; Fermentation; Klebsiella pneumoniae; Metabolic Engineering; NAD; NADP; Oxidation-Reduction

2017
Reversing an Extracellular Electron Transfer Pathway for Electrode-Driven Acetoin Reduction.
    ACS synthetic biology, 2019, 07-19, Volume: 8, Issue:7

    Topics: Acetoin; Alcohol Oxidoreductases; Electrodes; Electron Transport; Electrons; NAD; NADH, NADPH Oxidoreductases; Shewanella

2019
High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate.
    Metabolic engineering, 2021, Volume: 66

    Topics: Acetoin; Alcohol Oxidoreductases; Butylene Glycols; NAD; Saccharomyces cerevisiae

2021
NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1.
    Microbial biotechnology, 2023, Volume: 16, Issue:3

    Topics: Acetoin; Electron Transport; Electrons; NAD; Oxidation-Reduction; Oxidoreductases; Shewanella

2023
chemdatabank.com