acetic acid has been researched along with naltrindole in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (60.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gray, AM; Sewell, RD; Spencer, PS | 1 |
Gray, AM; Nevinson, MJ; Sewell, RD | 1 |
Newman, LC; Stevens, CW | 1 |
Labuz, D; Machelska, H; Mousa, SA; Schäfer, M; Stein, C | 1 |
de Groat, WC; Ferroni, MC; Kadow, BT; Kang, A; Lyon, TD; Roppolo, JR; Shen, B; Slater, RC; Tai, C; Wang, J; Xiao, Z; Zhang, Z | 1 |
5 other study(ies) available for acetic acid and naltrindole
Article | Year |
---|---|
The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds.
Topics: Abdominal Muscles; Acetic Acid; Amitriptyline; Analgesics; Animals; Antidepressive Agents; Cyclobutanes; Dothiepin; Male; Maprotiline; Mice; Muscle Contraction; Naloxone; Naltrexone; Narcotic Antagonists; Neprilysin; Neurotransmitter Uptake Inhibitors; Opioid Peptides; Pain Measurement; Paroxetine; Protease Inhibitors; Receptors, Opioid; Selective Serotonin Reuptake Inhibitors; Thiorphan | 1998 |
The involvement of opioidergic and noradrenergic mechanisms in nefopam antinociception.
Topics: Abdominal Pain; Acetic Acid; Adrenergic alpha-Antagonists; Analgesics; Analgesics, Non-Narcotic; Animals; Clonidine; Dose-Response Relationship, Drug; Drug Interactions; Idazoxan; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nefopam; Pain Measurement; Receptors, Adrenergic; Receptors, Opioid | 1999 |
Spinal administration of selective opioid antagonists in amphibians: evidence for an opioid unireceptor.
Topics: Acetic Acid; Analgesics; Animals; Benzofurans; Female; Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Pyrrolidines; Rana pipiens; Receptors, Opioid; Time Factors | 1999 |
Relative contribution of peripheral versus central opioid receptors to antinociception.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetic Acid; Analgesics, Non-Narcotic; Analgesics, Opioid; Analysis of Variance; Animals; Calcitonin Gene-Related Peptide; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Gene Expression; Loperamide; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Pain; Receptors, Opioid | 2007 |
Role of µ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats.
Topics: Acetic Acid; Animals; Cats; Female; Male; Morphinans; Naloxone; Naltrexone; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Tibial Nerve; Transcutaneous Electric Nerve Stimulation; Urinary Bladder, Overactive | 2015 |