acetaminophen and resorcinol

acetaminophen has been researched along with resorcinol in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (85.71)29.6817
2010's1 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Kapur, S; Rosario, M; Selassie, CD; Verma, RP1
Baert, B; Beetens, J; Bodé, S; De Spiegeleer, B; Deconinck, E; Lambert, J; Slegers, G; Slodicka, M; Stoppie, P; Van Gele, M; Vander Heyden, Y1
Hilvo, M; Innocenti, A; Parkkila, S; Scozzafava, A; Supuran, CT1
Innocenti, A; Scozzafava, A; Supuran, CT; Vullo, D1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Bua, S; Capasso, C; Del Prete, S; Entezari Heravi, Y; Gratteri, P; Nocentini, A; Saboury, AA; Sereshti, H; Supuran, CT1
Brusnichkin, AV; Dryagleva, ID; Orlova, NV; Proskurnin, MA; Samburova, VA1

Other Studies

7 other study(ies) available for acetaminophen and resorcinol

ArticleYear
Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.
    Journal of medicinal chemistry, 2005, Nov-17, Volume: 48, Issue:23

    Topics: Animals; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Enzyme Activation; Mice; Molecular Conformation; Phenols; Quantitative Structure-Activity Relationship; Vinblastine

2005
Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds.
    Bioorganic & medicinal chemistry, 2007, Nov-15, Volume: 15, Issue:22

    Topics: Anti-Inflammatory Agents; Cell Membrane Permeability; Cluster Analysis; Drug Evaluation, Preclinical; Humans; Models, Biological; Predictive Value of Tests; Quantitative Structure-Activity Relationship; Regression Analysis; Skin; Skin Absorption

2007
Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols.
    Bioorganic & medicinal chemistry letters, 2008, Jun-15, Volume: 18, Issue:12

    Topics: Animals; Binding Sites; Carbonic Anhydrase I; Carbonic Anhydrase II; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Humans; Hydrogen Bonding; Isoenzymes; Mice; Molecular Structure; Phenols; Stereoisomerism; Structure-Activity Relationship

2008
Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid.
    Bioorganic & medicinal chemistry, 2008, Aug-01, Volume: 16, Issue:15

    Topics: Acetaminophen; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Molecular Structure; Protein Isoforms; Salicylic Acid; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
    Bioorganic & medicinal chemistry, 2017, 05-01, Volume: 25, Issue:9

    Topics: Acetazolamide; Carbonic Anhydrase I; Carbonic Anhydrase Inhibitors; Dandruff; Humans; Hydrogen Bonding; Malassezia; Molecular Docking Simulation; Phenols; Structure-Activity Relationship

2017
The use of thermal lensing for the determination of pyrogens.
    Analytical and bioanalytical chemistry, 2003, Volume: 375, Issue:8

    Topics: Acetaminophen; Aminophenols; Carbocyanines; Hot Temperature; Humans; Ions; Lipopolysaccharides; Methylene Blue; Pyrogens; Resorcinols; Spectrum Analysis; Sugar Acids; Thiobarbiturates

2003