acebutolol and miglitol

acebutolol has been researched along with miglitol in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19901 (14.29)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Barker, HM; Bowey, EA; Canfield, JE; Taylor, RH1
Fujimoto, K; Furusawa, K; Jomori, T; Kimura, I; Lee, EY; Miki, T; Miyamoto, J; Taknaka, T; Uematsu, S; Zhang, X1
Li, M; Li, XL; Liu, YX; Peng, YT; Wang, KR; Yang, JX; Zhang, HX1

Reviews

1 review(s) available for acebutolol and miglitol

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for acebutolol and miglitol

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Regulation of the absorption of dietary carbohydrate in man by two new glycosidase inhibitors.
    Gut, 1986, Volume: 27, Issue:12

    Topics: 1-Deoxynojirimycin; Adult; Blood Glucose; Dietary Carbohydrates; Dose-Response Relationship, Drug; Glucosamine; Glycoside Hydrolases; Humans; Hydrogen; Imino Pyranoses; Intestinal Absorption; Male; Maltose; Starch; Substrate Specificity; Sucrose

1986
Gut carbohydrate inhibits GIP secretion via a microbiota/SCFA/FFAR3 pathway.
    The Journal of endocrinology, 2018, 12-01, Volume: 239, Issue:3

    Topics: 1-Deoxynojirimycin; Animals; Carbohydrate Metabolism; Fatty Acids, Volatile; Gastric Inhibitory Polypeptide; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glycoside Hydrolase Inhibitors; Incretins; KATP Channels; Maltose; Mice; Receptors, G-Protein-Coupled

2018
Supramolecular azasugar clusters based on an amphiphilic fatty-acid-deoxynojirimycin derivative as multivalent glycosidase inhibitors.
    Journal of materials chemistry. B, 2019, 03-07, Volume: 7, Issue:9

    Topics: 1-Deoxynojirimycin; alpha-Mannosidase; Animals; Blood Glucose; Cell Survival; Enzyme Inhibitors; Fatty Acids; Glucosamine; Glucose Tolerance Test; Hydrogen-Ion Concentration; Hypoglycemic Agents; Maltose; Mice

2019