acadesine has been researched along with dorsomorphin in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 5 (83.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ | 1 |
Chakour, KS; Freund, GG; Guest, CB | 1 |
Belcher, JD; Geng, JG; Huo, Y; Slungaard, A; Tang, R; Viollet, B; Wang, H; Wang, J; Wu, C; Zhang, C; Zhang, W; Zhu, C | 1 |
Chang, JW; Kim, JH; Kim, JS; Kim, SB; Lee, JH; Lee, SK; Park, JS | 1 |
Aoyagi, M; Asano, K; Haneishi, A; Kanai, Y; Komatsu, Y; Moriizumi, M; Ono, M; Otsuka, H; Takagi, K; Tanaka, T; Tomita, K; Tsuchiya, Y; Tsukada, A; Yamada, K; Yanagisawa, Y; Yokouchi, H | 1 |
Egilmez, NK; Hao, J; Li, B; Li, Q; Rao, E; Suttles, J; Zhang, Y | 1 |
6 other study(ies) available for acadesine and dorsomorphin
Article | Year |
---|---|
Identification of potent Yes1 kinase inhibitors using a library screening approach.
Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship | 2013 |
Macropinocytosis is decreased in diabetic mouse macrophages and is regulated by AMPK.
Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Cell Culture Techniques; Cell Line, Tumor; Diabetes Mellitus, Type 2; Disease Models, Animal; Energy Metabolism; Glucose; Hyperglycemia; Immunity; Leptin; Macrophage Activation; Macrophages, Peritoneal; Mice; Pinocytosis; Pyrazoles; Pyrimidines; Ribonucleosides | 2008 |
Acadesine inhibits tissue factor induction and thrombus formation by activating the phosphoinositide 3-kinase/Akt signaling pathway.
Topics: Adenosine A2 Receptor Antagonists; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Apolipoproteins E; Atherosclerosis; Blood Coagulation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Enzyme Activation; Fibrinolytic Agents; Humans; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Monocytes; NF-kappa B; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyrimidines; Receptor, Adenosine A2A; Ribonucleosides; RNA, Messenger; Sepsis; Signal Transduction; Thromboplastin; Transcription Factor AP-1; Triazines; Triazoles; Up-Regulation; Venous Thrombosis | 2010 |
AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition.
Topics: Albumins; Aldosterone; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Angiotensin II; Cell Line; Epithelial-Mesenchymal Transition; Glucose; Heme Oxygenase-1; Humans; Metformin; NADPH Oxidase 4; NADPH Oxidases; Nephrosclerosis; Pyrazoles; Pyrimidines; Reactive Oxygen Species; Ribonucleosides; Thioredoxins; Transforming Growth Factor beta | 2013 |
5-Aminoimidazole-4-carboxyamide-1-β-D-ribofranoside stimulates the rat enhancer of split- and hairy-related protein-2 gene via atypical protein kinase C lambda.
Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Basic Helix-Loop-Helix Transcription Factors; Calcium; Cycloheximide; Dactinomycin; Enzyme Activation; Gene Expression; HEK293 Cells; Homeodomain Proteins; Humans; Intracellular Signaling Peptides and Proteins; Isoenzymes; Liver; Phosphatidylinositol 3-Kinases; Phosphoenolpyruvate Carboxykinase (GTP); Phosphoinositide-3 Kinase Inhibitors; Protein Kinase C; Protein Synthesis Inhibitors; Pyrazoles; Pyrimidines; Rats; Ribonucleosides; RNA Polymerase II; RNA, Messenger; Signal Transduction; Transcription, Genetic | 2016 |
AMPK-dependent and independent effects of AICAR and compound C on T-cell responses.
Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Calcium Signaling; Cell Death; Cells, Cultured; Cytokines; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Activators; Genotype; Immunologic Factors; Lymphocyte Activation; Mice, Knockout; Phenotype; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Ribonucleosides; T-Lymphocytes; TOR Serine-Threonine Kinases | 2016 |