Page last updated: 2024-08-22

acadesine and dorsomorphin

acadesine has been researched along with dorsomorphin in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's5 (83.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Chakour, KS; Freund, GG; Guest, CB1
Belcher, JD; Geng, JG; Huo, Y; Slungaard, A; Tang, R; Viollet, B; Wang, H; Wang, J; Wu, C; Zhang, C; Zhang, W; Zhu, C1
Chang, JW; Kim, JH; Kim, JS; Kim, SB; Lee, JH; Lee, SK; Park, JS1
Aoyagi, M; Asano, K; Haneishi, A; Kanai, Y; Komatsu, Y; Moriizumi, M; Ono, M; Otsuka, H; Takagi, K; Tanaka, T; Tomita, K; Tsuchiya, Y; Tsukada, A; Yamada, K; Yanagisawa, Y; Yokouchi, H1
Egilmez, NK; Hao, J; Li, B; Li, Q; Rao, E; Suttles, J; Zhang, Y1

Other Studies

6 other study(ies) available for acadesine and dorsomorphin

ArticleYear
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Macropinocytosis is decreased in diabetic mouse macrophages and is regulated by AMPK.
    BMC immunology, 2008, Jul-30, Volume: 9

    Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Cell Culture Techniques; Cell Line, Tumor; Diabetes Mellitus, Type 2; Disease Models, Animal; Energy Metabolism; Glucose; Hyperglycemia; Immunity; Leptin; Macrophage Activation; Macrophages, Peritoneal; Mice; Pinocytosis; Pyrazoles; Pyrimidines; Ribonucleosides

2008
Acadesine inhibits tissue factor induction and thrombus formation by activating the phosphoinositide 3-kinase/Akt signaling pathway.
    Arteriosclerosis, thrombosis, and vascular biology, 2010, Volume: 30, Issue:5

    Topics: Adenosine A2 Receptor Antagonists; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Apolipoproteins E; Atherosclerosis; Blood Coagulation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Enzyme Activation; Fibrinolytic Agents; Humans; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Monocytes; NF-kappa B; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyrimidines; Receptor, Adenosine A2A; Ribonucleosides; RNA, Messenger; Sepsis; Signal Transduction; Thromboplastin; Transcription Factor AP-1; Triazines; Triazoles; Up-Regulation; Venous Thrombosis

2010
AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition.
    American journal of physiology. Renal physiology, 2013, Mar-15, Volume: 304, Issue:6

    Topics: Albumins; Aldosterone; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Angiotensin II; Cell Line; Epithelial-Mesenchymal Transition; Glucose; Heme Oxygenase-1; Humans; Metformin; NADPH Oxidase 4; NADPH Oxidases; Nephrosclerosis; Pyrazoles; Pyrimidines; Reactive Oxygen Species; Ribonucleosides; Thioredoxins; Transforming Growth Factor beta

2013
5-Aminoimidazole-4-carboxyamide-1-β-D-ribofranoside stimulates the rat enhancer of split- and hairy-related protein-2 gene via atypical protein kinase C lambda.
    Journal of biochemistry, 2016, Volume: 159, Issue:4

    Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Basic Helix-Loop-Helix Transcription Factors; Calcium; Cycloheximide; Dactinomycin; Enzyme Activation; Gene Expression; HEK293 Cells; Homeodomain Proteins; Humans; Intracellular Signaling Peptides and Proteins; Isoenzymes; Liver; Phosphatidylinositol 3-Kinases; Phosphoenolpyruvate Carboxykinase (GTP); Phosphoinositide-3 Kinase Inhibitors; Protein Kinase C; Protein Synthesis Inhibitors; Pyrazoles; Pyrimidines; Rats; Ribonucleosides; RNA Polymerase II; RNA, Messenger; Signal Transduction; Transcription, Genetic

2016
AMPK-dependent and independent effects of AICAR and compound C on T-cell responses.
    Oncotarget, 2016, Jun-07, Volume: 7, Issue:23

    Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Calcium Signaling; Cell Death; Cells, Cultured; Cytokines; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Activators; Genotype; Immunologic Factors; Lymphocyte Activation; Mice, Knockout; Phenotype; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Ribonucleosides; T-Lymphocytes; TOR Serine-Threonine Kinases

2016