abt-594 has been researched along with epibatidine* in 2 studies
2 other study(ies) available for abt-594 and epibatidine
Article | Year |
---|---|
3-(2,5-Dihydro-1H-pyrrol-2-ylmethoxy)pyridines: synthesis and analgesic activity.
We disclose an efficient procedure for the preparation of ethers of 2-substituted 2-hydroxymethylpyrroline and of 2-aminomethyl-3-pyrrolines, involving, as a key step, formation and nucleophilic ring opening of a cyclic sulfamidate. Several new analogs of epibatidine (1) and tebanicline (ABT-594, 2) were prepared and tested for analgesic activity in the mouse formalin model. Topics: Analgesics, Non-Narcotic; Animals; Azetidines; Bridged Bicyclo Compounds, Heterocyclic; Mice; Models, Chemical; Molecular Structure; Pain; Pyridines | 2005 |
ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization.
The discovery of (+/-)-epibatidine, a naturally occurring neuronal nicotinic acetylcholine receptor (nAChR) agonist with antinociceptive activity 200-fold more potent than that of morphine, has renewed interest in the potential role of nAChRs in pain processing. However, (+/-)-epibatidine has significant side-effect liabilities associated with potent activity at the ganglionic and neuromuscular junction nAChR subtypes which limit its potential as a clinical entity. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine] is a novel, potent cholinergic nAChR ligand with analgesic properties (see accompanying paper by Bannon et al., 1998b) that shows preferential selectivity for neuronal nAChRs and a consequently improved in vivo side-effect profile compared with (+/-)-epibatidine. ABT-594 is a potent inhibitor of the binding of [3H](-)-cytisine to alpha 4 beta 2 neuronal nAChRs (Ki = 37 pM, rat brain; Ki = 55 pM, transfected human receptor). At the alpha 1 beta 1 delta gamma neuromuscular nAChR labeled by [125I] alpha-bungarotoxin (alpha-Btx), ABT-594 has a Ki value of 10,000 nM resulting in a greater than 180,000-fold selectivity of the compound for the neuronal alpha 4 beta 2 nAChR. In contrast, (+/-)-epibatidine has Ki values of 70 pM and 2.7 nM at the alpha 4 beta 2 and alpha 1 beta 1 delta gamma nAChRs, respectively, giving a selectivity of only 38-fold. The S-enantiomer of ABT-594, A-98593 has activity at the neuronal alpha 4 beta 2 nAChR identical with ABT-594 (Ki = 34-39 pM), which demonstrates a lack of stereospecific binding similar to that reported previously for (+/-)-epibatidine. A similar lack of stereoselectivity is seen at the human alpha 7 receptor. However, A-98593 is 3-fold more potent at the neuromuscular nAChR (Ki = 3420 nM) and the brain alpha-Btx-sensitive nAChR (Ki = 4620 nM) than ABT-594. ABT-594 has weak affinity in binding assays for adrenoreceptor subtypes alpha-1B (Ki = 890 nM), alpha-2B (Ki = 597 nM) and alpha-2C (Ki = 342 nM), and it has negligible affinity (Ki > 1000 nM) for approximately 70 other receptors, enzyme and transporter binding sites. Functionally, ABT-594 is an agonist. At the transfected human alpha 4 beta 2 neuronal nAChR (K177 cells), with increased 86Rb+ efflux as a measure of cation efflux, ABT-594 had an EC50 value of 140 nM with an intrinsic activity (IA) compared with (-)-nicotine of 130%; at the nAChR subtype expressed in IMR-32 cells (sympathetic ganglion-like), an EC50 of 340 nM (IA = 126%); at the F11 d Topics: Administration, Oral; Alkaloids; Analgesics, Non-Narcotic; Animals; Azetidines; Azocines; Bridged Bicyclo Compounds, Heterocyclic; Bungarotoxins; Calcitonin Gene-Related Peptide; Calcium; Humans; Male; Nicotinic Agonists; Pyridines; Quinolizines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Xenopus laevis | 1998 |