a-967079 and cinnamaldehyde
a-967079 has been researched along with cinnamaldehyde* in 2 studies
Reviews
1 review(s) available for a-967079 and cinnamaldehyde
Article | Year |
---|---|
TRPA1: a transducer and amplifier of pain and inflammation.
The transient receptor potential ankyrin 1 (TRPA1) ion channel on peripheral terminals of nociceptive primary afferent nerve fibres contributes to the transduction of noxious stimuli to electrical signals, while on central endings in the spinal dorsal horn, it amplifies transmission to spinal interneurons and projection neurons. The centrally propagating nociceptive signal that is induced and amplified by TRPA1 not only elicits pain sensation but also contributes to peripheral neurogenic inflammation through a peripheral axon reflex or a centrally mediated back propagating dorsal root reflex that releases vasoactive agents from sensory neurons in the periphery. Endogenous TRPA1 agonists that are generated under various pathophysiological conditions both in the periphery and in the spinal cord have TRPA1-mediated pro-nociceptive and pro-inflammatory effects. Among endogenous TRPA1 agonists that have been shown to play a role in the pathogenesis of pain and inflammatory conditions are, for example, methylglyoxal, 4-hydroxynonenal, 12-lipoxygenase-derived hepoxilin A3, 5,6-epoxyeicosatrienoic acid and reactive oxygen species, while mustard oil and cinnamaldehyde are most commonly used exogenous TRPA1 agonists in experimental studies. Among selective TRPA1 antagonists are HC-030031, A-967079, AP-14 and Chembridge-5861528. Recent evidence indicates that TRPA1 plays a role also in transition of acute to chronic pain. Due to its location on a subpopulation of pain-mediating primary afferent nerve fibres, blocking the TRPA1 channel is expected to have antinociceptive, antiallodynic and anti-inflammatory effects. Topics: Acetanilides; Acrolein; Aldehydes; Animals; Ankyrins; Humans; Inflammation; Mustard Plant; Oximes; Pain; Plant Oils; Purines; Spinal Cord; Transient Receptor Potential Channels | 2014 |
Other Studies
1 other study(ies) available for a-967079 and cinnamaldehyde
Article | Year |
---|---|
Spinal transient receptor potential ankyrin 1 channel induces mechanical hypersensitivity, increases cutaneous blood flow, and mediates the pronociceptive action of dynorphin A.
We characterized pain behavior and cutaneous blood flow response induced by activation of the spinal transient receptor potential ankyrin 1 (TRPA1) channel using intrathecal drug administrations in the rat. Additionally, we assessed whether the pronociceptive actions induced by intrathecally administered dynorphin A, cholecystokinin or prostaglandin F(2α) are mediated by the spinal TRPA1 channel. Cinnamaldehyde, a TRPA1 agonist, produced a dose-related (3-10 μg) cutaneous blood flow increase and mechanical hypersensitivity effect. These effects at the currently used doses were of short duration and attenuated, although not completely, by pretreatment with A-967079, a TRPA1 antagonist. The cinnamaldehyde-induced hypersensitivity was also reduced by pretreatment with minocycline (an inhibitor of microglial activation), but not by carbenoxolone (a gap junction decoupler). In vitro study, however, indicated that minocycline only poorly blocks the TRPA1 channel. The mechanical hypersensitivity effect induced by dynorphin A, but not that by cholecystokinin or prostaglandin F(2α), was attenuated by a TRPA1 antagonist Chembridge-5861528 as well as A-967079. The cinnamaldehyde-induced cutaneous blood flow increase was not suppressed by MK-801, an NMDA receptor antagonist, or bicuculline, a GABA(A) receptor antagonist. The results indicate that spinal TRPA1 channels promote mechanical pain hypersensitivity and due to antidromic activation of nociceptive nerve fibers increase cutaneous blood flow. The attenuation of the cinnamaldehyde-induced hypersensitivity effect by minocycline may be explained by action other than block of the TRPA1 channel. Moreover, the spinal TRPA1 channel is involved in mediating the pronociceptive action of dynorphin A, but not that of the spinal cholecystokinin or prostaglandin F(2α). Topics: Acrolein; Analgesics, Non-Narcotic; Animals; Back Pain; Behavior, Animal; Cholecystokinin; Dinoprost; Dose-Response Relationship, Drug; Dynorphins; Hyperalgesia; Injections, Spinal; Male; Minocycline; Nerve Tissue Proteins; Oximes; Physical Stimulation; Posterior Horn Cells; Rats; Rats, Wistar; Regional Blood Flow; Skin; TRPA1 Cation Channel; TRPC Cation Channels | 2013 |