9r-(9alpha(z)-10alpha)-of-3--angeloyloxy-4--acetoxy-3--4--dihydroseselin has been researched along with anomalin* in 5 studies
5 other study(ies) available for 9r-(9alpha(z)-10alpha)-of-3--angeloyloxy-4--acetoxy-3--4--dihydroseselin and anomalin
Article | Year |
---|---|
Rapid and Simultaneous Measurement of Praeruptorin A, Praeruptorin B, Praeruptorin E, and Moisture Contents in Peucedani Radix Using Near-Infrared Spectroscopy and Chemometrics.
Peucedani Radix is a popular traditional Chinese medicine herb with a long history in China. Praeruptorin A (PA), praeruptorin B (PB), and praeruptorin E (PE) are usually taken as important quality indexes of Peucedani Radix.. To establish a rapid method for simultaneous determination of PA, PB, PE, and moisture contents in Peucedani Radix using near-infrared (NIR) spectroscopy and chemometrics.. One hundred twenty Peucedani Radix samples were analyzed with HPLC as a reference method. The NIR spectral scanning range was from 12000 cm-1 to 4000 cm-1. Partial least squares (PLS) regression algorithm was used to establish calibration models. Three variable selection methods were investigated, including variable importance in projection (VIP), competitive adaptive reweighted sampling (CARS), and Monte Carlo uninformative variable elimination (MCUVE). The performances of the established models were evaluated by root-mean-square error (RMSEC) and determination coefficient (Rc2) of calibration set, root-mean-square error (RMSEP) and determination coefficient (Rp2) of prediction set, and residual predictive deviation (RPD).. A clear ranking of the performance of the calibration models could be as follows: CARS-PLS > MCUVE-PLS > VIP-PLS > Full-PLS. For CARS-PLS, Rp2, RMSEP, and RPD of the prediction set are as follows: 0.9204, 0.0860%, and 3.5850 for PA; 0.8011, 0.0431%, and 2.0868 for PB; 0.8043, 0.0367%, and 2.1569 for PE; and 0.9249, 0.3350%, and 3.6551 for moisture, respectively.. The NIR spectroscopy combined with CARS-PLS calibration models could be used for rapid and accurate determination of PA, PB, PE, and moisture contents in Peucedani Radix samples. Topics: China; Coumarins; Spectroscopy, Near-Infrared | 2020 |
Simultaneous separation and determination of praeruptorin A, B and C by micellar electrokinetic chromatography using sodium dodecyl sulphate and sodium cholate as mixed micelles.
Praeruptorin A, B and C are major bioactive constituents in Peucedani Radix. They display anti-inflammatory effect, anti-hypertension effect, antiplatelet aggregation, potential anti-cancer activities and so on. They are worthy of investigation as potentially novel and versatile drugs.. To develop a method using micellar electrokinetic chromatography (MEKC) for the application in simultaneously separation and determination of praeruptorin A, B and C from Peucedani Radix and its medicinal preparations.. Method optimisation was carried out by investigating influences of significant factors on the separation. The method was subjected to validation. The determination of praeruptorin A, B and C in Peucedani Radix and its drug formulations was accomplished by the developed method.. The optimal separation condition was 20 mM borate buffer containing 40 mM sodium cholate (SC), 22 mM sodium dodecyl sulphate (SDS) and 25% (v/v) acetonitrile (pH 10.00); 15 kV of voltage; 25°C of temperature; detection at 224 nm. Under this condition, three analytes were baseline separated within 16 min. A good linearity was obtained with correlation coefficients from 0.9988 to 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.50 to 0.80 μg/mL and from 1.50 to 2.50 μg/mL, respectively. The recoveries ranged between 95.3% and 103.4%.. The proposed method has been successfully applied to the simultaneous determination of praeruptorin A, B and C in Peucedani Radix and its pharmaceutical preparations. Additionally, it could be a potential alternative to the quality control of Peucedani Radix. Topics: Buffers; Calibration; Chromatography, Micellar Electrokinetic Capillary; Coumarins; Hydrogen-Ion Concentration; Limit of Detection; Medicine, Chinese Traditional; Micelles; Reproducibility of Results; Sodium Cholate; Sodium Dodecyl Sulfate | 2018 |
¹H nuclear magnetic resonance based-metabolomic characterization of Peucedani Radix and simultaneous determination of praeruptorin A and praeruptorin B.
As a widely used traditional herbal medicine, it is crucial to characterize the holistic metabolic profile of Peucedani Radix (Chinese name: Qian-hu). However, it is quite arduous to obtain the whole picture of chemical constituents appropriately with the existing analytical techniques that were based on HPLC-UV or LC-MS/MS system. In present investigation, nuclear magnetic resonance (NMR) spectroscopy coupled with principal components analysis (PCA) was introduced to metabolomic characterization of Qian-hu crude extracts without any chromatographic separation. In addition, the contents of praeruptorin A (PA) and proaeruptorin B (PB) in Qian-hu were simultaneously determined using quantitative (1)H NMR (q(1)H NMR) spectroscopy. Eighteen reference compounds (1-18), which were purified from this herbal drug extract previously, were recruited for the assignment of the protonic signals in the (1)H NMR spectra. Following PCA, 15 batches of Peucedani Radix were divided into two groups (I and II), and angular-type pyranocoumarins, in particular PA and PB, as well as 5-methoxycoumarin were demonstrated as the predominant markers being responsible for the distinguishment of Qian-hu from different districts. The contents of the two analytes (PA & PB) were calculated by the relative ratio of the integral values of the target peak for each compound to the known amount of the internal standard, formononetin (IS). The lower limits of quantitation were determined as 19.5μg/mL for both PA and PB. The quantitative results indicated that the contents of PA and PB showed quite variable qualities among different extract samples. Above all, (1)H NMR spectroscopy, that could not only provide comprehensive profiles of the metabolites but also achieve convenient determination of praeruptorin A and praeruptorin B, is a promising means for evaluating the medicinal samples of Peucedani Radix. Topics: Apiaceae; Coumarins; Drugs, Chinese Herbal; Metabolomics; Plant Extracts; Plant Roots; Principal Component Analysis; Proton Magnetic Resonance Spectroscopy | 2014 |
Simultaneously enantiospecific determination of (+)-trans-khellactone, (+/-)-praeruptorin A, (+/-)-praeruptorin B, (+)-praeruptorin E, and their metabolites, (+/-)-cis-khellactone, in rat plasma using online solid phase extraction-chiral LC-MS/MS.
Many chiral drugs are used as the racemic mixtures in clinical practice. The occurrence of enantioselectively pharmacological activities calls for the development of enantiospecific analytical approaches during pharmacokinetic studies of enantiomers. Sample preparation plays a key role during quantitative analysis of biological samples. In current study, a rapid and reliable online solid phase extraction-chiral high performance liquid chromatography-tandem mass spectrometry (online SPE-chiral LC-MS/MS) method was developed for the simultaneously enantiospecific quantitation of (+)-trans-khellactone (dTK), (+/-)-cis-khellactone (d/lCK), (+/-)-praeruptorin A (d/lPA), (+/-)-praeruptorin B (d/lPB) and (+)-praeruptorin E (dPE), the main active angular-type pyranocoumarins (APs) in Peucedani Radix (Chinese name: Qian-hu) or the major metabolites of those APs, in rat plasma. The validation assay results described here show good selectivity and enantiospecificity, extraction efficiency, accuracy and precision with quantification limits (LOQs) of 2.57, 1.28, 1.28, 1.88, 4.16, 4.16 and 4.18ngmL(-1) for dTK, lCK, dCK, dPA, dPB, lPB and dPE, respectively, while lPA was not detected in rat plasma due to the carboxylesterase(s)-mediated hydrolysis. In addition, the validated system was satisfactorily applied to characterize the pharmacokinetic properties of those components in normal and chronic obstructive pulmonary disease (COPD) rats following oral administration of Qian-hu extract. dCK and lCK were observed as the main herb-related compounds in plasma. Enantioselectively pharmacokinetic profiles occurred for dCK vs lCK, dPA vs lPA, and dPB vs lPB in either normal or COPD rats. The proposed whole system is expected to be a preferable analytical tool for in vivo study of chiral drugs, in particular for the characterization of enantioselectively pharmacokinetic profiles. Topics: Administration, Oral; Animals; Calibration; Chromatography, High Pressure Liquid; Coumarins; Disease Models, Animal; Hydrolysis; Linear Models; Male; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Reproducibility of Results; Stereoisomerism; Tandem Mass Spectrometry | 2014 |
Chemopreventive effects of Peucedanum praeruptorum DUNN and its major constituents on SGC7901 gastric cancer cells.
In this study, the effects of Peucedanum praeruptorum DUNN methanolic extract (PPME) and its major constituents on SGC7901 human gastric cancer cells were evaluated. Two pyranocoumarins, namely, (±) praeruptorin A (PA) and (±) praeruptorin B (PB), were isolated from PPME. A high performance liquid chromatographic (HPLC) method was developed to determine the contents of PA and PB in PPME. The anti-proliferative and cytotoxic actions of PPME were observed using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and release of lactate dehydrogenase (LDH) assays. At 300 μg/mL, PPME inhibited cell growth by 51.2% (P < 0.01), probably linked to the high concentration of PA and PB. Both PA and PB exhibited antiproliferative and cytotoxic activities on the SGC7901 cells. Furthermore, the active principle compound, PA, also enhanced the actions of doxorubincin (DOX) on SGC7901 cells. Cell growth decreased higher with the combined treatment of PA and DOX than that with the chemotherapy agent applied alone, suggesting that PA could reduce the dose of DOX for the desired effects. Topics: Antineoplastic Agents; Apiaceae; Cell Line, Tumor; Cell Proliferation; Cell Survival; Coumarins; Doxorubicin; Drug Synergism; Humans; L-Lactate Dehydrogenase; Methanol; Plant Extracts; Stomach Neoplasms | 2010 |