9-Hydroxycalabaxanthone has been researched along with mangostin* in 3 studies
3 other study(ies) available for 9-Hydroxycalabaxanthone and mangostin
Article | Year |
---|---|
Discovery and Optimization of α-Mangostin Derivatives as Novel PDE4 Inhibitors for the Treatment of Vascular Dementia.
Topics: Aminopyridines; Animals; Benzamides; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Dementia, Vascular; Dogs; Drug Design; Humans; Male; Mice, Inbred C57BL; Molecular Structure; Phosphodiesterase 4 Inhibitors; Protein Binding; Rolipram; Structure-Activity Relationship; Vomiting; Xanthones | 2020 |
Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.
Somatic heterozygous mutations of isocitrate dehydrogenase-1 (IDH1) are abundantly found in several types of cancer and strongly implicate altered metabolism in carcinogenesis. In the present study, we have identified α-mangostin as a novel selective inhibitor of mutant IDH1 (IDH1-R132H). We have observed that α-mangostin competitively inhibits the binding of α-ketoglutarate (α-KG) to IDH1-R132H. The structure-relationship study reveals that α-mangostin exhibits the strongest core inhibitor structure. Finally, we have observed that α-mangostin selectively promotes demethylation of 5-methylcytosine (5mC) and histone H3 trimethylated lysine residues in IDH1 (+/R132H) MCF10A cells, presumably via restoring the activity of cellular α-KG-dependent DNA hydroxylases and histone H3 lysine demethylases. Collectively, we provide evidence that α-mangostin selectively inhibits IDH1-R132H. Topics: Binding, Competitive; Drug Discovery; Humans; Isocitrate Dehydrogenase; MCF-7 Cells; Molecular Structure; Mutation; Recombinant Proteins; Structure-Activity Relationship; Xanthones | 2015 |
Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents.
A xanthone-derived natural product, α-mangostin is isolated from various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthone derivatives based on α-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure-activity relationship studies revealed that phenol groups on C3 and C6 are critical to anti-proliferative activity and C4 modification is capable to improve both anti-cancer activity and drug-like properties. Our findings provide new possibilities for further explorations to improve potency. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Garcinia mangostana; Humans; Neoplasms; Structure-Activity Relationship; Xanthones | 2014 |