9-(4-fluoro-3-hydroxymethylbutyl)guanine has been researched along with fialuridine* in 2 studies
2 other study(ies) available for 9-(4-fluoro-3-hydroxymethylbutyl)guanine and fialuridine
Article | Year |
---|---|
PET of cardiac transgene expression: comparison of 2 approaches based on herpesviral thymidine kinase reporter gene.
PET of reporter gene expression holds promise for noninvasive monitoring of gene therapy. Previously, 2 approaches based on the herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) have been successfully applied to the heart. Wild-type HSV1-tk was imaged with (124)I-labeled 2'-fluoro-2'-deoxy-5-iodo-1-beta-D-arabinofuranosyl-5-iodouracil (FIAU), and a mutant HSV1-tk (HSV1-sr39tk) was imaged with (18)F-labeled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG). The aim of this study was to compare these 2 combinations with regard to specificity, imaging contrast, and reporter probe kinetics using dynamic PET in small and large animals.. Similar titers of adenovirus-expressing wild-type HSV1-tk (Ad(tk)), mutant HSV1-sr39tk (Ad(sr39tk)), or control genes were directly injected into the myocardium of 24 rats and 8 pigs. Two days later, dynamic PET was performed with a clinical scanner during the 120 min after injection of (124)I-FIAU (Ad(tk) animals and controls) or (18)F-FHBG (Ad(sr39tk) animals and controls). Imaging with (13)N-ammonia was performed to identify cardiac regions of interest.. In rats, significant cardiac (124)I-FIAU accumulation occurred in images obtained early (10-30 min) after Ad(tk) injection. Because of tracer washout, however, no difference between Ad(tk)-injected animals and controls was seen in the images obtained later. For (18)F-FHBG, specific myocardial accumulation greater than background levels was detected in Ad(sr39tk)-injected animals at early imaging and, in contrast to (124)I-FIAU accumulation, increased over time until the latest imaging (105-120 min). At maximum, cardiac (18)F-FHBG concentration showed a 4.15 +/- 1.65-fold increase compared with controls (105-120 min), and cardiac (124)I-FIAU concentration reached a maximal increase of 1.34 +/- 0.38-fold compared with controls (10-30 min, P = 0.0014). Global cardiac reporter probe kinetics in rats were confirmed by regional myocardial analysis in pig hearts. Transgene expression was specifically visualized by both approaches. The highest target-to-background ratio of (124)I-FIAU in Ad(tk)-infected pig myocardium was 1.50 +/- 0.20, versus 2.64 +/- 0.49 for (18)F-FHBG in Ad(sr39tk)-infected areas (P = 0.01). In vivo results were confirmed by ex vivo counting and autoradiography.. Both reporter gene/probe combinations were feasible for noninvasive imaging of cardiac transgene expression in different species. Specific probe kinetics suggest different myocardial handling of pyrimidine (FIAU) and acycloguanosine (FHBG) derivatives. The results favor (18)F-FHBG with mutant HSV1-sr39tk because of continuous accumulation over time and higher imaging contrast. Topics: Animals; Arabinofuranosyluracil; Gene Expression Profiling; Gene Transfer Techniques; Genes, Reporter; Genetic Therapy; Guanine; Heart; Iodine Radioisotopes; Male; Myocardium; Positron-Emission Tomography; Rats; Rats, Wistar; Species Specificity; Swine; Thymidine Kinase; Tissue Distribution; Transgenes; Viral Proteins | 2004 |
Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection.
Earlier studies involving comparison of different reporter probes have shown conflicting results between pyrimidine nucleosides [e.g., 2'-fluoro-2'-deoxy-1-beta- d-arabinofuranosyl-5-iodouracil (FIAU)] and acycloguanosine derivatives [e.g., penciclovir (PCV), 9-(4-fluoro-3-hydroxymethylbutyl)guanine (FHBG)]. We hypothesized that this reported discrepancy may be related to how the reporter gene is delivered to the cells-stably transfected vs adenoviral infection. We directly compared the uptake characteristics of [(18)F]FHBG, [(3)H]PCV, and [(14)C]FIAU in cell culture and in vivo using an adenoviral mediated gene transfer model and stably transfected cells. We further compared the uptake of three reporter probes using both HSV1-tk and a mutant HSV1-sr39tk expressing cells to assess the optimal reporter probe/reporter gene combination. [(14)C]FIAU accumulation was greater than that of [(3)H]PCV and [(18)F]FHBG in control cells and in HSV1-tk stably transfected cells ( P<0.001). After infection of C6 cells with AdCMV- HSV1-tk (1.5x10(8) pfu), [(18)F]FHBG and [(3)H]PCV accumulation was significantly greater than that of [(14)C]FIAU ( P<0.01). [(18)F]FHBG and [(3)H]PCV accumulated to a significantly greater extent than [(14)C]FIAU in C6-stb-sr39tk+ and AdCMV- HSV1-sr39tk infected C6 cells ( P<0.001). Results from the nude mice supported the results in cell culture. [(14)C]FIAU led to significantly higher %ID/g in C6-stb-tk+ xenografts than [(18)F]FHBG ( P<0.05); however, compared with [(14)C]FIAU, [(18)F]FHBG led to as high %ID/g in HSV1-tk expressing hepatocytes and to significantly greater %ID/g in C6-stb-sr39tk+ xenografts and HSV1-sr39tk expressing hepatocytes. Dynamic sequential images showed that [(18)F]FHBG was well retained in HSV1-sr39tk expressing cells (C6-stb-sr39tk+) for at least 4 h after injection, while it was rapidly cleared from HSV1-tk expressing cells (MH3924A-stb-tk+). [(14)C]FIAU accumulated in HSV1-tk stably expressing cells to a greater extent than either [(3)H]PCV or [(18)F]FHBG. However, the accumulation of [(3)H]PCV and [(18)F]FHBG in adenoviral infected C6 cells or hepatocytes was equivalent to or greater than that of [(14)C]FIAU. These results may be due to intracellular biochemical changes (e.g., thymidine) when cells are infected with adenovirus. For adenoviral studies, the [(18)F]FHBG/ HSV1-sr39tk combination was shown to be more sensitive than the [(14)C]FIAU/ HSV1-tk combination HSV1-tk. Topics: Adenoviridae Infections; Animals; Arabinofuranosyluracil; Cell Line, Tumor; Genes, Reporter; Glioma; Guanine; Intracellular Signaling Peptides and Proteins; Male; Metabolic Clearance Rate; Mice; Organ Specificity; Proteins; Radiopharmaceuticals; Rats; Tissue Distribution; Tomography, Emission-Computed; Transfection | 2003 |