8-prenylnaringenin has been researched along with xanthohumol* in 34 studies
1 review(s) available for 8-prenylnaringenin and xanthohumol
Article | Year |
---|---|
Beer and beer compounds: physiological effects on skin health.
Beer is one of the earliest human inventions and globally the most consumed alcoholic beverage in terms of volume. In addition to water, the 'German Beer Purity Law', based on the Bavarian Beer Purity Law from 1516, allows only barley, hops, yeasts and water for beer brewing. The extracts of these ingredients, especially the hops, contain an abundance of polyphenols such as kaempferol, quercetin, tyrosol, ferulic acid, xanthohumol/isoxanthohumol/8-prenylnaringenin, α-bitter acids like humulone and β-bitter acids like lupulone. 8-prenylnaringenin is the most potent phytoestrogen known to date. These compounds have been shown to possess various anti-bacterial, anti-inflammatory, anti-oxidative, anti-angiogenic, anti-melanogenic, anti-osteoporotic and anti-carcinogenic effects. Epidemiological studies on the association between beer drinking and skin disease are limited while direct evidence of beer compounds in clinical application is lacking. Potential uses of these substances in dermatology may include treatment of atopic eczema, contact dermatitis, pigmentary disorders, skin infections, skin ageing, skin cancers and photoprotections, which require an optimization of the biostability and topical delivery of these compounds. Further studies are needed to determine the bioavailability of these compounds and their possible beneficial health effects when taken by moderate beer consumption. Topics: Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Beer; Coumaric Acids; Cyclohexenes; Flavanones; Flavonoids; Humans; Kaempferols; Phenylethyl Alcohol; Phytoestrogens; Propiophenones; Quercetin; Skin; Skin Diseases; Terpenes; Xanthones | 2014 |
2 trial(s) available for 8-prenylnaringenin and xanthohumol
Article | Year |
---|---|
Disposition of hop prenylflavonoids in human breast tissue.
Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared with 17beta-estradiol (E(2)) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of >or=4 days, three supplements were taken daily for 5 days preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.72 and 17.65 nmol/L and 3.30 and 31.50 nmol/L, and between 0.26 and 5.14 pmol/g and 1.16 and 83.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.43-7.06 nmol/L and 0.78-4.83 pmol/g). Phase I metabolism appeared to be minor (approximately 10%), whereas extensive glucuronidation was observed (> 90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E(2)-equivalents were negligible compared with E(2) in adipose (384.6+/-118.8 fmol/g, p=0.009) and glandular (241.6+/-93.1 fmol/g, p<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue. Topics: Adipose Tissue, White; Adolescent; Adult; Biotransformation; Breast; Chromatography, High Pressure Liquid; Dietary Supplements; Female; Flavanones; Flavonoids; Flowers; Humans; Humulus; Mammary Glands, Human; Middle Aged; Phytoestrogens; Propiophenones; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Xanthones; Young Adult | 2010 |
The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine.
Hops, an essential beer ingredient, are a source of prenylflavonoids, including 8-prenylnaringenin (8-PN), one of the most potent phytoestrogens. Because 8-PN concentrations in beers are generally low, its health effects after moderate beer consumption were considered negligible. However, human intestinal microbiota may activate up to 4 mg/L isoxanthohumol (IX) in beer into 8-PN. Depending on interindividual differences in the intestinal transformation potential, this conversion could easily increase the 8-PN exposure 10-fold upon beer consumption. Here, we present a further investigation of the process both in vitro and in vivo. In vitro experiments with the dynamic SHIME model showed that hop prenylflavonoids pass unaltered through the stomach and small intestine and that activation of IX into 8-PN (up to 80% conversion) occurs only in the distal colon. In vitro incubations of 51 fecal samples from female volunteers with IX enabled us to separate the fecal microbiota into high (8 of 51), moderate (11 of 51) and slow (32 of 51) 8-PN producers, clearly illustrating an interindividual variability. Three women, selected from the respective groups, received a daily dose of 5.59 mg IX for 4 d. Intestinal IX activation and urinary 8-PN excretion were correlated (R(2) = 0.6417, P < 0.01). These data show that intestinal conversion of IX upon moderate beer consumption can lead to 8-PN exposure values that might fall within the range of human biological activity. Topics: Adult; Chromatography, High Pressure Liquid; Female; Flavanones; Flavonoids; Humans; Humulus; Intestinal Mucosa; Isomerism; Phytoestrogens; Propiophenones | 2006 |
31 other study(ies) available for 8-prenylnaringenin and xanthohumol
Article | Year |
---|---|
Preparation of Hop Estrogen-Active Material for Production of Food Supplements.
In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders. Topics: Beer; Catalysis; Dietary Supplements; Flavanones; Flavonoids; Humans; Humulus; Magnesium Oxide; Phytoestrogens; Plant Extracts; Plant Preparations; Propiophenones; Temperature | 2021 |
Beer Phenolic Composition of Simple Phenols, Prenylated Flavonoids and Alkylresorcinols.
Topics: Beer; Fermentation; Flavanones; Flavonoids; Phenols; Phenylethyl Alcohol; Prenylation; Propiophenones; Xanthones | 2020 |
Semi-Synthetic Approach Leading to 8-Prenylnaringenin and 6-Prenylnaringenin: Optimization of the Microwave-Assisted Demethylation of Xanthohumol Using Design of Experiments.
The isomers 8-prenylnaringenin and 6-prenylnaringenin, both secondary metabolites occurring in hops, show interesting biological effects, like estrogen-like, cytotoxic, or neuro regenerative activities. Accordingly, abundant sources for this special flavonoids are needed. Extraction is not recommended due to the very low amounts present in plants and different synthesis approaches are characterized by modest yields, multiple steps, the use of expensive chemicals, or an elaborate synthesis. An easy synthesis strategy is the demethylation of xanthohumol, which is available due to hop extraction industry, using lithium chloride and dimethylformamide, but byproducts and low yield did not make this feasible until now. In this study, the demethylation of xanthohumol to 8-prenylnaringenin and 6-prenylnaringenin is described the first time and this reaction was optimized using Design of Experiment and microwave irradiation. With the optimized conditions-temperature 198 °C, 55 eq. lithium chloride, and a reaction time of 9 min, a final yield of 76% of both prenylated flavonoids is reached. Topics: Demethylation; Flavanones; Flavonoids; Lithium Chloride; Microwaves; Propiophenones; Research Design; Temperature; Time Factors | 2020 |
Reductive Metabolism of Xanthohumol and 8-Prenylnaringenin by the Intestinal Bacterium Eubacterium ramulus.
The intestinal microbiota transforms a wide range of available substrates, including polyphenols. Microbial catabolites of polyphenols can contribute in significant ways to the health-promoting properties of their parent polyphenols. This work aims to identify intestinal metabolites of xanthohumol (XN), a prenylated flavonoid found in hops (Humulus lupulus) and beer, as well as to identify pathways of metabolism of XN in the gut.. To investigate intestinal metabolism, XN and related prenylated flavonoids, isoxanthohumol (IX), and 8-prenylnaringenin (8PN) were added to growing cultures of intestinal bacteria, Eubacterium ramulus and E. limosum. Liquid chromatography coupled with mass spectrometry was used to identify metabolites of the flavonoids from the cultures. The metabolic capacity of E. limosum appears to be limited to O-demethylation. Evidence from the study indicates that E. ramulus hydrogenates XN to form α,β-dihydroxanthohumol (DXN) and metabolizes the potent phytoestrogen 8PN into the chalcones, O-desmethylxanthohumol (DMX) and O-desmethyl-α,β-dihydroxanthohumol (DDXN).. Microbial metabolism is likely to affect both activity and toxicity of XN and derivatives. This study along with others highlights that attention should be focused on metabolites, in particular, products of intestinal microbial metabolism. Topics: Eubacterium; Flavanones; Flavonoids; Intestines; Propiophenones; Tandem Mass Spectrometry; Xanthones | 2019 |
Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin.
In terms of drug disposal and metabolism SDR21C1 (carbonyl reductase 1; CBR1) exerts an assorted substrate spectrum among a large variety of clinically relevant substances. Additionally, this short-chain dehydrogenase/reductase is extensively expressed in most tissues of the human body, thus underpinning its role in xenobiotic metabolism. Reduction of the chemotherapeutic daunorubicin (DAUN) to daunorubicinol (DAUNol) is a prominent example of its metabolic properties in terms of chemoresistance and cardiotoxicity. The hop-derived prenylated chalcone xanthohumol (XN) and its physiological metabolites isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) have previously been reported to inhibit other DAUN reducing reductases and dehydrogenases including AKR1B1 and AKR1B10. Also with regard to their effects by means of interacting with cancer-related molecular pathways, XN and related prenylated flavonoids in particular have been in the focus of recent studies. In this study, inhibitory properties of these substances were examined with CBR1-mediated 2,3-hexanedione and DAUN reduction. All substances tested in this study turned out to efficiently inhibit recombinant human CBR1 within a low micromolar to submicromolar range. Among the substances tested, 8-PN turned out to be the most effective inhibitor when using 2,3-hexanedione as a substrate (K Topics: Alcohol Oxidoreductases; Cell Line, Tumor; Chalcones; Daunorubicin; Flavanones; Flavonoids; Hexanones; Humans; Inhibitory Concentration 50; Kinetics; Oxidation-Reduction; Propiophenones; Recombinant Proteins; Substrate Specificity; Xanthones | 2019 |
Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells.
Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Beer; Caco-2 Cells; Caspases; Cell Line, Tumor; Colorectal Neoplasms; Drug Combinations; Drug Interactions; Feeding Behavior; Flavanones; Flavonoids; Fluorouracil; Humans; Humulus; Irinotecan; Oxaliplatin; Plant Extracts; Propiophenones; Reactive Oxygen Species; Treatment Outcome; Xanthones | 2019 |
The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10.
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (K Topics: Aldo-Keto Reductases; Binding Sites; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavanones; Flavonoids; Humans; Humulus; Molecular Structure; Propiophenones; Structure-Activity Relationship; Xanthones | 2018 |
Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
Many natural products, particularly phenolic compounds, have been reported to have a strong inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the key enzymes in the pathology of Alzheimer's disease (AD).. Therefore, we hypothesized that some xanthahumol, naringenin, and acyl phloroglucinol derivatives (1-14) isolated from Humulus lupulus L. (hops) may have an inhibitory potential against AChE and BChE.. Inhibitory potential of compounds 1-14 were tested against AChE and BChE using ELISA microtiter assay. Different molecular docking simulations, including IFD and GOLD protocols, were implemented to verify the interactions between the ligands and the active site amino acids and also their binding energies inside the catalytic crevices of AChE and BChE. ADME/Tox analysis were used to determine pharmacological activities of the compounds.. Among them, 3‑hydroxy‑xanthohumol (IC. Our findings revealed that xanthohumol in particular could be considered as lead molecule to explore new cholinesterase inhibitors for AD. Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Evaluation, Preclinical; Flavanones; Flavonoids; Humans; Humulus; Molecular Docking Simulation; Phloroglucinol; Propiophenones; Structure-Activity Relationship | 2018 |
Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells.
For the prenylated hops phenols 6- and 8-prenylnaringenin (1 and 2), xanthohumol (3), and isoxanthohumol (4), a variety of biological activities has been described. In the current study, a transwell based in vitro model using the human intestinal epithelial cell line Caco-2 was developed to assess potential beneficial effects of compounds 1-4 on TNF-α-induced impairment of tight junction (TJ) permeability. Transepithelial electrical resistance (TEER) was measured using the latest cellZScope online monitoring device. TNF-α treatment (25 ng/mL) induced a significant decrease in TEER values (204.71 ± 4.57 at 72 h) compared to that in control values (245.94 ± 1.68 at 72 h). To determine preventive effects on TNF-α-induced impairment of TJ permeability, 1-4 were added to the apical compartment of Caco-2 monolayers 1 h before TNF-α treatment; afterward, TNF-α was added to the basolateral compartment to induce TJ dysfunction and incubated for a further 72 h. Using this setting, only 1 and 2 prevented epithelial disruption induced by TNF-α. To evaluate restorative effects of 1-4, TNF-α was added to the basolateral compartment of Caco-2 cell monolayers. After 48 h of incubation, 1-4 were added to the apical side, and TEER values were monitored online for a further 72 h. Under these experimental conditions, only 2 restored TNF-α induced barrier dysfunction. Topics: Caco-2 Cells; Cell Survival; Epithelial Cells; Flavanones; Flavonoids; Humans; Humulus; Interferon-alpha; Intestinal Mucosa; Molecular Structure; Permeability; Phenols; Prenylation; Propiophenones; Tight Junctions; Tumor Necrosis Factor-alpha; Xanthones | 2017 |
DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health.
Botanical dietary supplements contain multiple bioactive compounds that target numerous biological pathways. The lack of uniform standardization requirements is one reason that inconsistent clinical effects are reported frequently. The multifaceted biological interactions of active principles can be disentangled by a coupled pharmacological/phytochemical approach using specialized ("knock-out") extracts. This is demonstrated for hops, a botanical for menopausal symptom management. Employing targeted, adsorbent-free countercurrent separation, Humulus lupulus extracts were designed for pre- and postmenopausal women by containing various amounts of the phytoestrogen 8-prenylnaringenin (8-PN) and the chemopreventive constituent xanthohumol (XH). Analysis of their estrogenic (alkaline phosphatase), chemopreventive (NAD(P)H-quinone oxidoreductase 1 [NQO1]), and cytotoxic bioactivities revealed that the estrogenicity of hops is a function of 8-PN, whereas their NQO1 induction and cytotoxic properties depend on XH levels. Antagonization of the estrogenicity of 8-PN by elevated XH concentrations provided evidence for the interdependence of the biological effects. A designed postmenopausal hop extract was prepared to balance 8-PN and XH levels for both estrogenic and chemopreventive properties. An extract designed for premenopausal women contains reduced 8-PN levels and high XH concentrations to minimize estrogenic while retaining chemopreventive properties. This study demonstrates the feasibility of modulating the concentrations of bioactive compounds in botanical extracts for potentially improved efficacy and safety. Topics: Dietary Supplements; Estrogens; Female; Flavanones; Flavonoids; Humans; Humulus; Molecular Structure; Phytoestrogens; Propiophenones; Women's Health | 2017 |
Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by metabolic disturbances in specific tissues. The present work aimed to analyze the effects of xanthohumol (XN) and 8-prenylnaringenin (8PN), two beer-derived polyphenols, in liver and skeletal muscle lipid and glycolytic metabolism in T2DM mice model. Thirty C57Bl/6 mice were randomly divided into five groups: standard diet (control), high-fat diet (DM), high-fat diet plus ethanol (DM-Ethanol), high-fat diet plus 10 mg/L XN (DM-XN) and high-fat diet plus 10 mg/L 8PN (DM-8PN) during 20 weeks. Fasting blood glucose and insulin tolerance tests were performed 1 week before sacrifice. At the end of the study, blood, liver and skeletal muscle were collected. Both XN and 8PN treatments prevented body weight gain; decreased glycemia, triglyceride, cholesterol and alkaline phosphatase levels; and improved insulin sensitivity. Polyphenols promoted hepatic and skeletal muscle AMP-activated protein kinase (AMPK) activation, diminishing the expression of target lipogenic enzymes (sterol regulatory element binding protein-1c and fatty acid synthase) and acetyl-CoA carboxylase activity. Moreover, both XN and 8PN treatments decreased VEGFR-1/VEGFB pathway, involved in fatty acid uptake, and increased AS160 expression, involved in GLUT4 membrane translocation. Presented data demonstrated that both XN and 8PN treatment resulted in AMPK signaling pathway activation, thus suppressing lipogenesis. Their consumption prevented body weight gain and improved plasma lipid profile, with significant improvement of insulin resistance and glucose tolerance. XN- or 8PN-enriched diet could ameliorate diabetic-associated metabolic disturbances by regulating glucose and lipid pathways. Topics: Acetyl-CoA Carboxylase; Animals; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; fas Receptor; Flavanones; Flavonoids; Glycolysis; Insulin Resistance; Lipids; Male; Mice, Inbred C57BL; Propiophenones; Sterol Regulatory Element Binding Protein 2; Vascular Endothelial Growth Factor Receptor-1 | 2017 |
Modulation of VEGF signaling in a mouse model of diabetes by xanthohumol and 8-prenylnaringenin: Unveiling the angiogenic paradox and metabolism interplay.
Imbalance in kidney and heart neovascularization is common in type2 diabetes (T2DM) patients. Nevertheless, the mechanisms governing this angiogenic paradox have not been elucidated. Xanthohumol (XN) and 8-prenylnaringenin (8PN) beer polyphenols modulate angiogenesis, being thus targets for T2DM-related complications. Our work examined whether polyphenols consumption affects angiogenic paradox and metabolism in a T2DM mouse model.. An increase in kidney and a reduction in left ventricle (LV) microvessels of diabetic C57Bl/6 mice were observed. XN consumption reduced angiogenesis, VEGFR-2 expression/activity, VEGF-A and phosphofructokinase-2/fructose-2,6-bisphosphatase-3 enzyme expression, a metabolic marker present in endothelial tip cells in T2DM mice kidney. 8PN had opposite effects in T2DM mice LV. These XN and 8PN effects were dependent on VEGF levels as revealed by in vitro assays. These findings were accompanied by tissue and plasma reduced expression levels of VEGF-B and its receptors, VEGFR1 and neuropilin-1, by both polyphenols.. Beer polyphenols modulate T2DM angiogenic paradox in a tissue-dependent manner. We also show for the first time that both polyphenols decreased VEGF-B pathway, which is implicated in endothelial-to-tissue lipid metabolism. Altogether, the effects of these polyphenols in the crosstalk between angiogenesis and metabolism render them potent agents for novel diabetic therapeutic interventions. Topics: Angiogenesis Inducing Agents; Animals; Diabetes Complications; Diabetes Mellitus, Type 2; Disease Models, Animal; Flavanones; Flavonoids; Humans; Mice; Neovascularization, Pathologic; Polyphenols; Propiophenones; Signal Transduction; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2 | 2017 |
Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade").
Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low μM concentrations. Topics: Arachidonate 5-Lipoxygenase; Chalcones; Flavonoids; Humulus; Intramolecular Oxidoreductases; Italy; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Phytoestrogens; Plant Extracts; Plants, Medicinal; Polyphenols; Prenylation; Propiophenones; Prostaglandin-E Synthases | 2016 |
Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops.
Xanthohumol (XN) is a bioactive prenylflavonoid from hops. A single-dose pharmacokinetic (PK) study was conducted in men (n = 24) and women (n = 24) to determine dose-concentration relationships.. Subjects received a single oral dose of 20, 60, or 180 mg XN. Blood was collected at 0, 0.25, 0.5, 1, 2, 4, 8, 12, 24, 48, 72, 96, and 120 h. Plasma levels of XN and its metabolites, isoxanthohumol (IX), 8-prenylnaringenin (8PN), and 6-prenylnaringenin (6PN) were measured by LC-MS/MS. Xanthohumol (XN) and IX conjugates were dominant circulating flavonoids among all subjects. Levels of 8PN and 6PN were undetectable in most subjects. The XN PK profile showed peak concentrations around 1 h and between 4-5 h after ingestion. The maximum XN concentrations (C(max)) were 33 ± 7 mg/L, 48 ± 11 mg/L, and 120 ± 24 mg/L for the 20, 60, and 180 mg dose, respectively. Using noncompartmental modeling, the area under the curves (AUC(0→∞)) for XN were 92 ± 68 h × μg/L, 323 ± 160 h × μg/L, and 863 ± 388 h × μg/L for the 20, 60, and 180 mg dose, respectively. The mean half-life of XN was 20 h for the 60 and 18 h for the 180 mg dose.. XN has a distinct biphasic absorption pattern with XN and IX conjugates being the major circulating metabolites. Topics: Administration, Oral; Adult; Chromatography, Liquid; Dose-Response Relationship, Drug; Female; Flavanones; Flavonoids; Half-Life; Humans; Humulus; Hypoglycemic Agents; Male; Propiophenones; Tandem Mass Spectrometry; Xanthones | 2014 |
Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes.
Common hop (Humulus lupulus) constitutes a source of numerous prenylated chalcones such as xanthohumol (XH) and flavanones such as 8-prenylnaringenin (8-PN) and isoxanthohumol (IXH). Range of their biological activities includes estrogenic, anti-inflammatory, anti-infective, anti-cancer, and antioxidant activities. The aim of the present work was to characterize the influence of prenylated polyphenols on model 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes by means of differential scanning calorimetry (DSC), fluorescence and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. All studied compounds intercalated into DPPC bilayers and decreased its melting temperature as recorded by DSC, Laurdan and Prodan fluorescence, and ATR-FTIR. Polyphenols interacted mainly with glycerol backbone and acyl chain region of membrane. Magnitude of the induced effect correlated both with lipophilicity and molecular shape of the studied compounds. Elbow-shaped 8-PN and IXH were locked at polar-apolar region with their prenyl chains penetrating into hydrophobic part of the bilayer, while relatively planar XH molecule adopted linear shape that resulted in its deeper insertion into hydrophobic region. Additionally, by means of DSC and Laurdan fluorescence IXH was demonstrated to induce lateral phase separation in DPPC bilayers in gel-like state. It was assumed that IXH-rich and IXH-poor microdomains appeared within membrane. Present work constitutes the first experimental report describing interactions of prenylated hop polyphenols with phospholipid model membranes. Topics: 1,2-Dipalmitoylphosphatidylcholine; 2-Naphthylamine; Calorimetry, Differential Scanning; Flavanones; Flavonoids; Fluorescent Dyes; Humulus; Hydrophobic and Hydrophilic Interactions; Laurates; Lipid Bilayers; Molecular Structure; Propiophenones; Spectrometry, Fluorescence; Spectroscopy, Fourier Transform Infrared; Thermodynamics; Xanthones | 2014 |
Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2).
Hops (Humulus lupulus L.) produce unique prenylflavonoids that exhibit interesting bioactivities. This study investigates the interactions between selected prenylflavonoids and breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic bioavailability and multidrug resistance (MDR).. ABCG2-inhibitory activity of xanthohumol (XN), isoxanthohumol (IX), 6-prenylnaringenin (6-PN), 8-prenylnaringenin (8-PN), and 6,8-diprenylnarigenin (6,8-diPN) was evaluated using mitoxantrone accumulation and vesicular transport assays. XN, IX, and 8-PN were tested for a substrate-type relationship with ABCG2 using ATPase and bidirectional transport assays. The prenylflavonoids exhibited significant ABCG2-inhibitory activities in mitoxantrone accumulation and vesicular transport assays. In the ATPase assay, XN, IX, and 8-PN inhibited baseline and sulfasalazine-stimulated ATPase activities with IC50 of 2.16-27.0 μM. IX and 8-PNalso displayed bell-shaped activation curves in Ko143-suppressed membranes, indicating a substrate-type relationship. For IX, efflux ratios of 1.25 ± 0.21 and 9.18 ± 0.56 were observed in wild type and ABCG2-overexpressing MDCKII cell monolayers, respectively. The latter was reduced to 1.25 ± 0.15 in the presence of the ABCG2-specific inhibitor Ko143, demonstrating an ABCG2-mediated efflux of IX. Additionally, evidence was shown for the involvement of ABCG2 in the efflux of 8-PN and/or its sulfate conjugate.. Prenylflavonoids are potent inhibitors of ABCG2 and therefore implicated in ABCG2-mediated food/herb-drug interactions and MDR. ABCG2-mediated efflux of prenylflavonoids may represent one mechanism that regulates prenylflavonoid bioavailability. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Availability; Breast Neoplasms; Drug Resistance, Neoplasm; Female; Flavanones; Flavonoids; Gene Expression Regulation, Neoplastic; HEK293 Cells; Herb-Drug Interactions; Humans; Humulus; Membrane Transport Proteins; Mitoxantrone; Neoplasm Proteins; Phytoestrogens; Propiophenones; Xanthones; Xenobiotics | 2014 |
K-targeted metabolomic analysis extends chemical subtraction to DESIGNER extracts: selective depletion of extracts of hops (Humulus lupulus).
This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid-liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by (1)H NMR, LC-MS, and HiFSA-based NMR fingerprinting. Topics: Algorithms; Chromatography, Liquid; Flavanones; Flavonoids; Humulus; Metabolomics; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plant Extracts; Propiophenones; Xanthones | 2014 |
Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo.
Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue-specific activity have not been analyzed.. An orally administered hop extract and subcutaneously injected XH were administered to Sprague-Dawley rats over 4 days. LC-MS-MS analysis of plasma, liver, and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH-induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, (i) XH modified Kelch-like ECH-associated protein leading to nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation and antioxidant response element (ARE) activation; (ii) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; (iii) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to estrogen receptorα, recruiting Nrf2, and downregulating ARE-regulated genes.. XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. Topics: Animals; Antioxidant Response Elements; Female; Flavanones; Flavonoids; Glutathione Transferase; Humans; Humulus; Inactivation, Metabolic; Liver; Mammary Glands, Animal; MCF-7 Cells; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Phosphorylation; Plant Extracts; Propiophenones; Protein Kinase C; Protein Transport; Rats; Rats, Sprague-Dawley; Tissue Distribution | 2013 |
Analytical condition setting a crucial step in the quantification of unstable polyphenols in acidic conditions: analyzing prenylflavanoids in biological samples by liquid chromatography-electrospray ionization triple quadruple mass spectrometry.
The interest in studying hops and beer prenylflavanoids, isoxanthohumol, xanthohumol, and 8-prenylnaringenin, has increased in recent years due to their biological activity as strong phytoestrogens and potent cancer chemopreventive agents. However, prenylflavanoids behave differently from most polyphenols, since they are unstable at acidic pH. To our knowledge, no published studies to date have considered the degradation of these compounds during analytical processes. In the present work, a new sensitive and specific method based on solid phase extraction and liquid chromatography coupled to electrospray ionization triple quadruple mass spectrometry (LC-ESI-MS/MS) was developed and validated. The new method was optimized to avoid degradation of the selected analytes, isoxanthohumol, xanthohumol, and 8-prenylnaringenin, throughout the analytical process and to reduce the urine matrix effect in LC-ESI-MS/MS assays. It was concluded that a neutral pH (pH 7.0) is necessary for the analysis of prenylflavanoids, in order to maintain the stability of compounds for at least 24 h. The addition of ascorbic acid to the media improved stability, calibration curves, coefficients of correlation, accuracy, and precision parameters. Mix-mode cation exchange sorbent yielded the best matrix effect factors and recoveries. Method validation results showed appropriate intraday and interday accuracy and precision (<15%). Recovery of isoxanthohumol, xanthohumol, and 8-prenylnaringenin was 97.1% ± 0.03, 105.8% ± 0.05, and 105.4% ± 0.04, respectively, and matrix effect factors were nearly 100%. The stability assay showed that analytes were stable for at least 24 h. The method was applied to quantify 10 human samples of urine and was able to quantify prenylflavanoids in urine after the consumption of a single dose of beer (330 mL). Topics: Acids; Adult; Chromatography, Liquid; Flavanones; Flavonoids; Humans; Male; Polyphenols; Propiophenones; Solid Phase Extraction; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Xanthones; Young Adult | 2013 |
Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression.
Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and oxidative stress. Hoechst 33342 was used to measure cell viability and reactive oxygen species (ROS) production was determined by 2',7'-dichlorofluorescein diacetate. Catalase, superoxide dismutase, and glutathione reductase enzymatic activities were determined and protein expression of sirtuin1, sirtuin3, and oxidative phosphorylation system (OXPHOS) were done by Western blot. Treatments XN 0.01, 8PN 0.01, and 8PN 1 µM led to a decrease in ROS production along with an increase of OXPHOS and sirtuin expression; in contrast, XN 5 µM gave rise to an increase of ROS production accompanied by a decrease in OXPHOS and sirtuin expression. These results suggest that XN in low dose (0.01 µM) and 8PN at all assayed doses (0.001-20 µM) presumably improve mitochondrial function, whereas a high dose of XN (5 µM) worsens the functionality of this organelle. Topics: Breast Neoplasms; Catalase; Cell Survival; Electron Transport Complex I; Female; Flavanones; Flavonoids; Gene Expression Regulation, Neoplastic; Glutathione Reductase; Humans; MCF-7 Cells; Mitochondria; Oxidative Stress; Propiophenones; Reactive Oxygen Species; Superoxide Dismutase | 2013 |
Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective.
Flavonoids target a variety of pathophysiological mechanisms and are therefore increasingly considered as compounds encompassed with therapeutic potentials in diseases such as cancer, diabetes, arteriosclerosis, and neurodegenerative diseases and mood disorders. Hops (Humulus lupulus L.) is rich in flavonoids such as the flavanone 8-prenylnaringenin, which is the most potent phytoestrogen identified so far, and the prenylchalcone xanthohumol, which has potent tumor-preventive, anti-inflammatory and antiviral activities. In the present study, we questioned whether hops-derived prenylflavonoids and synthetic derivatives thereof act on neuronal precursor cells and neuronal cell lines to induce neuronal differentiation, neurite outgrowth and neuroprotection. Therefore, mouse embryonic forebrain-derived neural precursors and Neuro2a neuroblastoma-derived cells were stimulated with the prenylflavonoids of interest, and their potential to activate the promoter of the neuronal fate-specific doublecortin gene and to stimulate neuronal differentiation and neurite outgrowth was analyzed. In this screening, we identified highly "neuroactive" compounds, which we termed "enhancement of neuronal differentiation factors" (ENDFs). The most potent molecule, ENDF1, was demonstrated to promote neuronal differentiation of neural stem cells and neurite outgrowth of cultured dorsal root ganglion neurons and protected neuronal PC12 cells from cobalt chloride-induced as well as cholinergic neurons of the nucleus basalis of Meynert from deafferentation-induced cell death. The results indicate that hops-derived prenylflavonoids such as ENDFs might be powerful molecules to promote neurogenesis, neuroregeneration and neuroprotection in cases of chronic neurodegenerative diseases, acute brain and spinal cord lesion and age-associated cognitive impairments. Topics: Animals; Cell Death; Cell Differentiation; Cell Line; Chick Embryo; Chromans; Cobalt; Doublecortin Domain Proteins; Doublecortin Protein; Flavanones; Flavonoids; Ganglia, Spinal; Mice; Microtubule-Associated Proteins; Neural Stem Cells; Neurites; Neurogenesis; Neuropeptides; PC12 Cells; Propiophenones; Rats; Tumor Cells, Cultured | 2013 |
Inhibitors of hyaluronan export from hops prevent osteoarthritic reactions.
An early reaction in osteoarthritic chondrocytes is hyaluronan overproduction followed by proteoglycan loss and collagen degradation. We recently found that hyaluronan is exported by the ATP-binding cassette transporter multidrug resistance associated protein 5 (MRP5) in competition with cGMP and that some phosphodiesterase 5 inhibitors also inhibited hyaluronan export. These inhibitors also prevented osteoarthritic reactions in cartilage. In an effort to identify the improved inhibitors directed primarily toward MRP5, we analyzed the flavonoids.. Prenylflavonoids from hop xanthohumol, isoxanthohumol and 8-prenylnaringenin inhibited MRP5 export at lower concentrations than phosphodiesterase 5 activity. They were analyzed for their effect on IL-induced osteoarthritic reactions in bovine chondrocytes. Xanthohumol was the superior compound to inhibit hyaluronan export, as well as proteoglycan and collagen loss. It also prevented the shedding of metalloproteases into the culture medium. It directly inhibited MRP5, because it reduced the export of the MRP5 substrate fluorescein immediately and did not influence the hyaluronan synthase activity.. Xanthohumol may be a natural compound to prevent hyaluronan overproduction and subsequent reactions in osteoarthritis. Topics: Animals; ATP-Binding Cassette Transporters; Cattle; Cells, Cultured; Chondrocytes; Collagen; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Flavanones; Flavonoids; Humulus; Hyaluronic Acid; Multidrug Resistance-Associated Proteins; Osteoarthritis; Phosphodiesterase 5 Inhibitors; Plant Extracts; Propiophenones; Proteoglycans; Xanthones | 2011 |
Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats.
The impact of human intestinal bacteria on the bioavailability of the prenylflavonoid xanthohumol (XN) was studied by comparing germ-free (GF) and human microbiota-associated (HMA) rats. After XN application, XN, XN conjugates, and isoxanthohumol (IX) conjugates occurred in blood samples of GF and HMA rats, whereas IX was detected only in the blood of HMA rats. Overall excretion of XN and its metabolites within 48 h was only 4.6% of the ingested dose in GF rats and 4.2% in HMA rats, feces being the major route of excretion. While both GF and HMA rats excreted XN, IX, and their conjugates with urine and feces, 8-prenylnaringenin and its corresponding conjugates were exclusively observed in the feces of HMA rats. The microbial formation of 8-prenylnaringenin was confirmed by incubation of XN and IX with human fecal slurries. The amount of conjugates excreted in urine and feces was lower in HMA rats compared to GF rats indicating their hydrolysis by human intestinal microbiota. Thus, the impact of bacteria on the XN metabolism in the gut may affect the in vivo effects of ingested XN. Topics: Animals; Antioxidants; Biological Availability; Biotransformation; Feces; Female; Flavanones; Flavonoids; Gastric Juice; Gastrointestinal Contents; Germ-Free Life; Humans; Intestinal Mucosa; Intestines; Male; Metabolic Detoxication, Phase II; Metagenome; Middle Aged; Propiophenones; Rats; Rats, Sprague-Dawley; Xanthones | 2010 |
Quantification of xanthohumol, isoxanthohumol, 8-prenylnaringenin, and 6-prenylnaringenin in hop extracts and derived capsules using secondary standards.
Hop is a well-known and already frequently used estrogenic phytotherapeutic, containing the interesting prenylflavonoids, xanthohumol (XN), isoxanthohumol (IXN), 8- and 6-prenylnaringenin (8-PN and 6-PN). Since the use of secondary standards can form a solution whenever the determination is required of certain components, not commercially available or too expensive, it was decided to develop an accessible HPLC-DAD method for the determination of these prenylflavonoids. The amounts were determined in hop extract and capsules, using quercetin and naringenin as secondary standards. After optimization of the sample preparation and HPLC conditions, the analysis was validated according to the ICH guidelines. The response function of XN, 8-PN, quercetin and naringenin showed a linear relationship. For the determination of XN, a calibration line of at least three concentrations of quercetin has to be constructed. The correction factors for XN (quercetin) and for 8-PN (naringenin) were validated and determined to be 0.583 for XN, and 1.296 for IXN, 8-PN and 6-PN. The intermediate precision was investigated and it could be concluded that the standard deviation of the method was equal considering time and concentration (RSD of 2.5-5%). By means of a recovery experiment, it was proven that the method is accurate (recoveries of 96.1-100.1%). Additionally, by analysing preparations containing hop extracts on the Belgian market, it was shown that the method is suitable for its use, namely the determination of XN, IXN, 8-PN and 6-PN in hop extract and capsules, using quercetin and naringenin as secondary standards. Topics: Calibration; Capsules; Chemistry Techniques, Analytical; Chromatography, High Pressure Liquid; Flavanones; Flavonoids; Humulus; Phytoestrogens; Propiophenones; Quercetin; Reproducibility of Results; Xanthones | 2010 |
Dynamic residual complexity of natural products by qHNMR: solution stability of desmethylxanthohumol.
The use of chromatographic assays to assess the residual complexity of materials that are purified from natural sources by chromatographic means is, in a sense, a case of the fox watching the henhouse. Beside their static residual complexity, which is intrinsic to their metabolic origin, biologically active natural materials can also be involved in chemical reactions that lead to dynamic residual complexity. The present study examines the dynamics of the hop prenylphenol, desmethylxanthohumol (DMX), by means of quantitative (1)H-NMR (qHNMR) in a setting that mimics IN VITRO and physiological conditions. The experiments provide a comprehensive, time-resolved, and mechanistic picture of the spontaneous isomerization of DMX into congeneric flavanones, including their (1)H/(2)D isotopomers. Formation of the potent phytoestrogen, 8-prenylnaringenin (8PN), suggests that measurable estrogenic activity even of high-purity DMX is an artifact. Together with previously established qHNMR assays including purity activity relationships (PARs), dynamic qHNMR assays complement important steps of the post-isolation evaluation of natural products. Thus, qHNMR allows assessment of several unexpected effects that potentially break the assumed linkage between a single chemical entity (SCE) and biological endpoints. Topics: Biological Products; Flavanones; Flavonoids; Humulus; Isomerism; Nuclear Magnetic Resonance, Biomolecular; Phytoestrogens; Propiophenones | 2009 |
Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death.
Xanthohumol (X), isoxanthohumol (IX), 8-prenylnaringenin (8PN) and 6-prenylnaringenin (6PN), prenylflavonoids from hop (Humulus lupulus L.), were investigated for their cytotoxicity and the mechanism by which they exert cell death when incubated with prostate cancer cell lines PC-3 and DU145. All compounds induced cell death in the absence of caspase-3 activation and typical apoptotic morphological features. The general pan-caspase inhibitor zVAD-fmk could not protect this form of cell death. In addition, the formation of vacuoles was observed in PC-3 cells treated with IX and 6PN, and in DU145 treated with IX, 8PN and 6PN, which could suggest the induction of autophagy and consequent cell death. The results indicate that hop-derived prenylflavanones (IX, 8PN, 6PN), but not prenylchalcones (X) induce a caspase-independent form of cell death, suggested to be autophagy. Therefore, IX, 8PN and 6PN appear to be promising candidates for further investigation in prostate anticancer therapy. Topics: Amino Acid Chloromethyl Ketones; Caspase 3; Caspase Inhibitors; Caspases; Cell Death; Cell Line, Tumor; Cell Survival; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Flavanones; Flavonoids; Humans; Humulus; Male; Molecular Structure; Plant Extracts; Propiophenones; Prostatic Neoplasms; Xanthones | 2008 |
Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women.
Hop-derived food supplements and beers contain the prenylflavonoids xanthohumol (X), isoxanthohumol (IX) and the very potent phyto-oestrogen (plant-derived oestrogen mimic) 8-prenylnaringenin (8-PN). The weakly oestrogenic IX can be bioactivated via O-demethylation to 8-PN. Since IX usually predominates over 8-PN, human subjects may be exposed to increased doses of 8-PN. A dietary intervention trial with fifty healthy post-menopausal Caucasian women was undertaken. After a 4 d washout period, participants delivered faeces, blank urine and breath samples. Next, they started a 5 d treatment with hop-based supplements that were administered three times per d and on the last day, a 24 h urine sample was collected. A semi-quantitative FFQ was used to estimate fat, fibre, alcohol, caffeine and theobromine intakes. The recoveries of IX, 8-PN and X in the urine were low and considerable inter-individual variations were observed. A five-fold increase in the dosage of IX without change in 8-PN concentration resulted in a significant lower IX recovery and a higher 8-PN recovery. Classification of the subjects into poor (60%), moderate (25%) and strong (15%) 8-PN producers based on either urinary excretion or microbial bioactivation capacity gave comparable results. Recent antibiotic therapy seemed to affect the 8-PN production negatively. A positive trend between methane excretion and 8-PN production was observed. Strong 8-PN producers consumed less alcohol and had a higher theobromine intake. From this study we conclude that in vivo O-demethylation of IX increases the oestrogenic potency of hop-derived products. Topics: Aged; Anti-Bacterial Agents; Diet; Dietary Supplements; Feces; Female; Flavanones; Flavonoids; Gastrointestinal Tract; Humans; Humulus; Methane; Middle Aged; Phenotype; Phytoestrogens; Postmenopause; Propiophenones; Xanthones | 2007 |
Effect of hop (Humulus lupulus L.) flavonoids on aromatase (estrogen synthase) activity.
The aim of this work was to study the effect of the prenylflavonoids xanthohumol, isoxanthohumol, and 8-prenylnaringenin on the activity and expression of the enzyme aromatase (estrogen synthase). The effect of different kinds of beer containing these prenylflavonoids was also tested. Aromatase activity was determined by measuring the release of tritiated water during the conversion of [(3)H]androstenedione to estrone. Aromatase expression was determined by RT-PCR. This assay was carried out in choriocarcinoma-derived JAR cells. The tested prenylflavonoids were able to inhibit estrogen formation, and their IC(50) values were determined, although no effect on aromatase expression was found. Lager beer, alcohol-free beer, stout beer, and xanthohumol-rich stout beer (200 microL/mL) significantly decreased aromatase activity. In conclusion, prenylflavonoids are able to modulate aromatase activity, decreasing estrogen synthesis, with relevance for the prevention and treatment of estrogen-dependent disorders such as breast cancer. Topics: Aromatase; Aromatase Inhibitors; Beer; Cell Line; Choriocarcinoma; Flavanones; Flavonoids; Humulus; Propiophenones | 2006 |
Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin.
Hop, an essential ingredient in most beers, contains a number of prenylflavonoids, among which 8-prenylnaringenin (8-PN) would be the most potent phytoestrogen currently known. Although a number of health effects are attributed to these compounds, only a few reports are available about the bioavailability of prenylflavonoids and the transformation potency of the intestinal microbial community. To test these transformations, four fecal samples were incubated with xanthohumol, isoxanthohumol (IX), and 8-PN. Upon incubation with IX, present in strong ales up to 4 mg/L, 36% was converted into 8-PN in one fecal sample and the estrogenic properties of the sample drastically increased. In an experiment with 12 fecal cultures, this conversion was observed in one-third of the samples, indicating the importance of interindividual variability in the intestinal microbial community. Eubacterium limosum was identified to be capable of this conversion (O-demethylation) of IX into 8-PN, and after strain selection, a conversion efficiency of 90% was achieved. Finally, strain supplementation to a nonconverting fecal sample led to rapid and high 8-PN production at only 1% (v/v) addition. Up to now, the concentration of 8-PN in beer was considered too low to affect human health. However, these results show that the activity of the intestinal microbial community could more than 10-fold increase the exposure concentration. Because prenylflavonoids are present in many beers with IX being the major constituent, the results raise the question whether moderate beer consumption might contribute to increased in vivo levels of 8-PN and even influence human health. Topics: Adult; Bacteria; Eubacterium; Feces; Fermentation; Flavanones; Flavonoids; Humans; Humulus; Intestines; Phytoestrogens; Propiophenones | 2005 |
Identification, quantitation and biological activity of phytoestrogens in a dietary supplement for breast enhancement.
A hop-based dietary supplement, marketed for natural breast enhancement, was analysed to determine the identity and biological activity of active constituents and potential biological effects in man. Extracts of the dietary supplement were analysed by LC-MS(n) and phytoestrogens identified and quantitated by reference to appropriate standards. Only hop-associated phytoestrogens were found in the dietary supplement at significant concentrations as follows (mean+/-1 S.D.); 8-prenylnaringenin 10.9+/-0.3, 6-prenylnaringenin 27.4+/-1.2, 6,8-diprenylnaringenin 0.9+/-0.1, xanthohumol 321+/-17 and isoxanthohumol 81.1+/-1.6 microg/g of dietary supplement. The oestrogenic activity of extracts in an ERalpha reporter gene assay was equivalent to 48+/-6.3 ng 17beta-oestradiol/g supplement and consistent with the 8-prenylnaringenin content. The dietary supplement extract also inhibited reductive 17beta-hydroxysteroid oxidoreductase activity, but to a greater extent than a concentration matched reference mixture of hop phytoestrogens. However, the supplement was only weakly active in mouse uterotrophic assays following administration in feed or after subcutaneous injection of extract at doses of 8-PN up to 250 times higher than that recommended for women. These preliminary findings suggest that the dietary supplement is unlikely to produce oestrogenic effects in vivo at the level of the uterus; supporting evidence is still required to demonstrate efficacy. Topics: Animals; Breast; Dietary Supplements; Estradiol; Estrogen Receptor alpha; Estrogens, Non-Steroidal; Female; Flavanones; Flavonoids; Gas Chromatography-Mass Spectrometry; Humans; Humulus; Isoflavones; Mice; Phytoestrogens; Plant Preparations; Propiophenones; Receptors, Estrogen; Safety; Uterus | 2001 |
In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus.
1. Several unique flavonoid compounds have recently been isolated from hops, Humulus lupulus, and their presence has been detected in beer. Their chemical structures are similar to other plant-derived compounds, many present in the human diet, that have been shown to have cancer chemopreventive properties due, in part, to inhibition of cytochrome P450 enzymes that activate carcinogens. Additionally, preliminary studies have shown these flavonoids (at 100 microM) to be inhibitory of P450-mediated activation reactions in a variety of in vitro systems. Thus, the in vitro effects of these phytochemicals on cDNA-expressed human CYP1A1, CYP1B1, CYP1A2, CYP3A4 and CYP2E1 were currently examined by the use of diagnostic substrates and the carcinogen AFB1. 2. At 10 microM, the prenylated chalcone, xanthohumol (XN), almost completely inhibited the 7-ethoxyresorufin O-deethylase (EROD) activity of CYP1A1. At the same concentration, other hop flavonoids decreased the EROD activity by 90.8-27.0%. 3. At 10 microM, XN completely eliminated CYP1B1 EROD activity, whereas the other hop flavonoids showed varying degrees of inhibitory action ranging from 99.3 to 1.8%. 4. In contrast, the most effective inhibitors of CYP1A2 acetanilide 4-hydroxylase activity were the two prenylated flavonoids, 8-prenylnaringenin (8PN) and isoxanthohumol (IX), which produced > 90% inhibition when added at concentrations of 10 microM. 5. CYP1A2 metabolism of the carcinogen AFB1 was also inhibited by IX and 8PN as shown by decreased appearance of dihydrodiols and AFM1 as analysed by hplc. IX and 8PN also decreased covalent binding of radiolabelled AFB1 to microsomal protein in a concomitant manner. 6. XN, IX and 8PN, however, were poor inhibitors of CYP2E1 and CYP3A4 as measured by their effect on chorzoxazone hydroxylase and nifedipine oxidase activities respectively. 7. These results suggest that the hop flavonoids are potent and selective inhibitors of human cytochrome P450 and warrant further in vivo investigations. Topics: Aflatoxin B1; Anticarcinogenic Agents; Aryl Hydrocarbon Hydroxylases; Chemoprevention; Chlorzoxazone; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; DNA, Complementary; Flavanones; Flavonoids; Humans; Kinetics; Microsomes; Mixed Function Oxygenases; Models, Chemical; Propiophenones; Protein Binding; Protein Prenylation; Rosales | 2000 |