8-prenylnaringenin has been researched along with daidzein* in 5 studies
5 other study(ies) available for 8-prenylnaringenin and daidzein
Article | Year |
---|---|
Effect of 17β-estradiol and flavonoids on the regulation of expression of newly identified oestrogen responsive genes in a rat raphe nuclei-derived cell line.
Due to the health risks attributed to perimenopausal hormone therapy, phytoestrogens such as flavonoids are receiving widespread attention to help alleviate menopausal symptoms, including hormone-driven mood disorders. Based on our previous reporter gene study regarding their transactivational activity in raphe nuclei cells from a brain region involved in regulation of mood disturbances, we herein study their effects on the regulation of expression of 17β-estradiol (E2)-regulated genes. DNA microarray was used to globally assess E2-induced gene expression in RNDA cells, a rat raphe nuclei-derived cellular model expressing oestrogen receptor β. Out of 212 regulated genes, six were selected for verification and as endpoints for the effect of flavonoids on the regulation of mRNA expression in proliferating as well as differentiating RNDA cells. Under proliferative conditions, E2 up-regulated mRNA expression of Cml-5, Sox-18 and Krt-19. Similar effects were observed in response to 8-prenylnaringenin (8-PN), genistein (GEN), daidzein (DAI) and equol (EQ). In line with E2, mRNA expression of Nefm and Zdhhc-2 was down-regulated following 8-PN, GEN, DAI, EQ and naringenin treatment. No regulation was observed on Slc6a4 mRNA expression in response to E2 or the flavonoids in proliferating RNDA cells. When cells were shifted to conditions promoting differentiation, changes in cell morphology, in mRNA expression levels and in responsiveness towards E2 and the tested flavonoids were noticed. These expression studies additionally highlighted some of the genes as markers for RNDA cellular differentiation. RNDA cells should prove useful to elucidate molecular and cellular mechanisms of exogenous oestrogen receptor ligands with neural cell populations. Topics: Animals; Cell Differentiation; Cell Line; Cell Proliferation; Down-Regulation; Equol; Estradiol; Estrogen Receptor beta; Estrogens; Flavanones; Flavonoids; Gene Expression Profiling; Gene Expression Regulation; Genistein; Isoflavones; Phytoestrogens; Rats; RNA, Messenger; SOXF Transcription Factors | 2012 |
Cosupplementation of isoflavones, prenylflavonoids, and lignans alters human exposure to phytoestrogen-derived 17beta-estradiol equivalents.
The microbial metabolism of dietary phytoestrogens varies considerably among individuals and influences the final exposure to bioactive compounds. In view of the increasing number of food supplements combining several classes of phytoestrogens, the microbial potential to activate various proestrogens within an individual was evaluated in 3 randomized dietary crossovers. Treatment allocation was based on participants' eligibility (>45% in vitro bioactivation of >or=2 separate proestrogens by fecal cultures; n = 40/100). After a run-in of >or=4 d, participants were given soy-, hop-, and/or flax-based food supplements dosed either separately (SOY: 2.83 mg daidzein aglycone equivalents/supplement, HOP: 1.20 mg isoxanthohumol (IX)/supplement, or FLAX: 2.08 mg secoisolariciresinol (SECO) aglycone equivalents/supplement; reference intervention) or simultaneously (MIX; test intervention) 3 times/d for 5 d, followed by a wash-out period (>or=7 d) and the second intervention. Before and after each (co)supplementation, spot urine and serum were collected. In total, 22 equol, 19 8-prenylnaringenin (8-PN), and 21 enterolactone (ENL) producers completed the SOY+MIX, HOP+MIX, and FLAX+MIX trials, respectively. The microbial bioactivation of daidzein, IX, and SECO, generally decreased upon coincubation in vitro (equol: 4.4%, P = 0.164; 8-PN: 20.5%, P < 0.001; ENL: 44.3%, P < 0.001) and cosupplementation in vivo (equol: 28.3%, P = 0.009; 8-PN: 35.4%, P = 0.107; ENL: 35.9%, P = 0.003). Although the bioavailabilities of total isoflavones, prenylflavonoids, and lignans were not significantly affected upon coadministration, participants were exposed to lower phytoestrogen-derived 17beta-estradiol equivalents. In conclusion, the bioavailability of phytoestrogens, especially when given in mixtures, is subject to high interindividual variation. These findings support the importance of personalized screening when assessing the efficacy of such products and mixtures. Topics: Dietary Supplements; Equol; Estradiol; Feces; Flavanones; Flavonoids; Genistein; Humans; Isoflavones; Lignans; Phytoestrogens | 2009 |
Development of a screening assay for ligands to the estrogen receptor based on magnetic microparticles and LC-MS.
A high throughput screening assay for the identification of ligands to pharmacologically significant receptors was developed based on magnetic particles containing immobilized receptors followed by liquid chromatography-mass spectrometry (LC-MS). This assay is suitable for the screening of complex mixtures such as botanical extracts. For proof-of-principle, estrogen receptor-alpha (ER-alpha) and ER-beta were immobilized on magnetic particles functionalized with aldehyde or carboxylic acid groups. Alternatively, biotinylated ER was immobilized onto streptavidin-derivatized magnetic particles. The ER that was immobilized using the streptavidin-biotin chemistry showed higher activity than that immobilized on aldehyde or carboxylic acid functionalized magnetic particles. Immobilized ER was incubated with extracts of Trifolium pratense L. (red clover) or Humulus lupulus L. (hops). As a control for non-specific binding, each botanical extract was incubated with magnetic particles containing no ER. After magnetic separation of the particles containing bound ligands from the unbound components in the extract, the particles were washed, ligands were released using methanol, and then the ligands were identified using LC-MS. The estrogens genistein and daidzein were identified in the red clover extract, and the estrogen 8-prenylnaringenin was identified in the hop extract. These screening results are consistent with those obtained using previous screening approaches. Topics: Binding Sites; Biological Assay; Chromatography, Liquid; Estrogen Receptor alpha; Estrogen Receptor beta; Flavanones; Genistein; Humulus; Isoflavones; Ligands; Magnetics; Mass Spectrometry; Methanol; Nanoparticles; Plant Extracts; Receptors, Estrogen; Time Factors; Trifolium | 2008 |
Effects of estrogenic xenobiotics on human and mouse spermatozoa.
To investigate human sperm responsiveness to the estrogenic xenobiotic genistein and seek further information regarding the mechanism of action of estrogenic xenobiotics using mouse spermatozoa.. Uncapacitated human spermatozoa were incubated with genistein and assessed using chlortetracycline (CTC) fluorescence. CTC was also used to evaluate mouse sperm responses to daidzein and combinations of genistein, 8-prenylnaringenin and nonylphenol. Several steroids were tested to determine structure-function relationships, and possible involvement of cAMP and G proteins in responses was also investigated.. Genistein significantly accelerated capacitation and acrosome loss in human spermatozoa, with 1, 10 and 100 nmol/l being equally effective. In mouse spermatozoa, daidzein produced significant responses, and combinations of xenobiotics at low concentrations were more effective than used singly. The compounds appear to act at the cell surface, and responses to three different steroids were nonidentical. A protein kinase-A inhibitor blocked responses to xenobiotics, while genistein and nonylphenol significantly stimulated cAMP production. Pertussis toxin and dideoxyadenosine blocked responses, suggesting involvement of inhibitory G proteins and membrane-associated adenylyl cyclases.. Human and mouse sperm responses to genistein are very similar, but human gametes appear to be even more sensitive. The mechanism of action may involve unregulated stimulation of cAMP production, leading to significant acrosome loss, undesirable because already acrosome-reacted cells are nonfertilizing. Xenobiotics were even more effective in combination. Since simultaneous exposure to low concentrations of multiple xenobiotics is likely to occur in animals and humans, further investigation is needed to determine whether this could impair fertility. Topics: Acrosome; Animals; Cyclic AMP; Dideoxyadenosine; Estradiol; Flavanones; Genistein; Humans; Isoflavones; Male; Mice; Pertussis Toxin; Phenols; Phytoestrogens; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Sperm Capacitation; Spermatozoa; Steroids; Xenobiotics | 2006 |
Effect of phytoestrogens on gene expression of carbonic anhydrase II in rat uterus and liver.
The aim of this study was to characterize carbonic anhydrase II (CA2), as novel estrogen responsive gene, towards its usefulness to elucidate the molecular mechanisms of phytoestrogen action. Effects of estradiol-17beta (E2), and the phytoestrogens genistein (Gen), daidzein (Dai), as well as 8-prenylnaringenin (8PN) on CA2 mRNA expression were investigated in vivo in the uterus and liver of Wistar rats, and in vitro in Fe33 hepatoma cells. Relative amounts of mRNA levels of CA2 were measured by real-time RT-PCR. In vivo CA2 expression in uterus and liver is down-regulated by estrogen in time dependent manner with the most pronounced effect detectable 72 h after treatment. Treatment with Gen results in a slight down-regulation of CA2 expression in the uterus. In liver a response to Gen is detectable only after 7 h, where the expression of the gene is down-regulated to 60%. Treatment with Dai and 8PN for 72 h results in a slight down-regulation of CA2 in both tissues. In contrast in Fe 33 cells CA2 gene expression was up-regulated in response to the treatment with E2 for 7 h. In summary, we could demonstrate that the modulation of CA2 gene expression following treatment with E2 and Gen in rat uterus is comparable to the uterotrophic response of these substances, but with an inverted pattern. Remarkably, of all phytoestrogens 8PN exhibited the strongest uterotrophic response but only induced a very faint decrease of CA2 expression. In addition, we provide the first pieces of evidence that 8PN, like Gen and Dai, cannot be considered as a pure agonist. In conclusion, CA2 shows estrogen sensitivity not only in both tissues studied, but also in many others. Further, it exhibits a differential sensitivity thereby being capable to discriminate between different molecular qualities of phytoestrogens, like demonstrated for Gen and 8PN. Topics: Animals; Carbonic Anhydrase II; Down-Regulation; Estradiol; Female; Flavanones; Gene Expression; Genistein; Isoflavones; Liver; Phytoestrogens; Rats; Tumor Cells, Cultured; Up-Regulation; Uterus | 2005 |