8-phenyltheophylline has been researched along with theobromine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (16.67) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (83.33) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Holtzman, SG | 1 |
Capasso, A | 1 |
Braasch, DA; Buddington, RK; Kimura, Y; Turner, JR | 1 |
Fan, YJ; Lautt, WW; Ming, Z; Yang, X | 1 |
Capasso, A; Gallo, C | 1 |
6 other study(ies) available for 8-phenyltheophylline and theobromine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Discriminative stimulus properties of caffeine in the rat: noradrenergic mediation.
Topics: 1-Methyl-3-isobutylxanthine; Adenosine; Adrenergic alpha-Antagonists; Animals; Apomorphine; Avoidance Learning; Caffeine; Clonidine; Diazepam; Discrimination Learning; Male; Norepinephrine; Pentobarbital; Picrotoxin; Rats; Rats, Inbred Strains; Theobromine; Theophylline | 1986 |
Adenosine receptors are involved in the control of acute naloxone-precipitated withdrawal: in vitro evidence.
Topics: Adenosine; Animals; Caffeine; Dipyridamole; Guinea Pigs; Ileum; In Vitro Techniques; Male; Naloxone; Narcotic Antagonists; Phenethylamines; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Receptors, Purinergic P1; Substance Withdrawal Syndrome; Theobromine; Theophylline | 2000 |
Lumenal adenosine and AMP rapidly increase glucose transport by intact small intestine.
Topics: 3-O-Methylglucose; Adenosine; Adenosine Monophosphate; Animals; Colforsin; Female; Glucose; Intestinal Absorption; Intestine, Small; Male; Mice; Mice, Inbred BALB C; Purinergic P1 Receptor Antagonists; Signal Transduction; Sodium-Glucose Transporter 1; Stimulation, Chemical; Theobromine; Theophylline | 2005 |
Contribution of hepatic adenosine A1 receptors to renal dysfunction associated with acute liver injury in rats.
Topics: Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Antagonists; Animals; Chemical and Drug Induced Liver Injury; Denervation; Disease Models, Animal; Liver; Liver Diseases; Male; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A1; Receptors, Adenosine A2; Renal Insufficiency; Sodium; Theobromine; Theophylline; Thioacetamide; Urine; Xanthines | 2006 |
Functional interaction between purinergic system and opioid withdrawal: in vitro evidence.
Topics: Adenosine; Adenosine A1 Receptor Agonists; Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Agonists; Adenosine A2 Receptor Antagonists; Adenosine Triphosphate; Analgesics, Opioid; Animals; Caffeine; Dipyridamole; Dose-Response Relationship, Drug; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphine; Morphine Dependence; Muscle, Smooth; Naloxone; Narcotic Antagonists; Narcotics; Phenethylamines; Purinergic P2 Receptor Agonists; Purinergic P2 Receptor Antagonists; Quinidine; Receptor, Adenosine A1; Receptors, Adenosine A2; Receptors, Purinergic P2; Substance Withdrawal Syndrome; Theobromine; Theophylline | 2009 |