8-oxodeoxyguanosine-triphosphate and deoxyguanosine-triphosphate

8-oxodeoxyguanosine-triphosphate has been researched along with deoxyguanosine-triphosphate* in 6 studies

Other Studies

6 other study(ies) available for 8-oxodeoxyguanosine-triphosphate and deoxyguanosine-triphosphate

ArticleYear
Crystal Structure and Substrate Specificity of the 8-oxo-dGTP Hydrolase NUDT1 from Arabidopsis thaliana.
    Biochemistry, 2019, 02-19, Volume: 58, Issue:7

    Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms.

    Topics: Arabidopsis Proteins; Catalytic Domain; Crystallography, X-Ray; Deoxyguanine Nucleotides; Hydrogen Bonding; Kinetics; Models, Molecular; Mutation; Protein Conformation; Pyrophosphatases; Substrate Specificity; Terpenes

2019
MutT homologue 1 (MTH1) catalyzes the hydrolysis of mutagenic O6-methyl-dGTP.
    Nucleic acids research, 2018, 11-16, Volume: 46, Issue:20

    Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.

    Topics: Animals; Catalytic Domain; Crystallography, X-Ray; Deoxyguanine Nucleotides; DNA Modification Methylases; DNA Repair Enzymes; Dogs; Escherichia coli; HL-60 Cells; Humans; Hydrolysis; Kinetics; Mice; Nucleotides; Phosphoric Monoester Hydrolases; Pyrophosphatases; Species Specificity; Swine; Temozolomide; Tumor Suppressor Proteins; Zebrafish

2018
Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase gamma replication fidelity.
    Nucleic acids research, 2008, Volume: 36, Issue:7

    Replication of the mitochondrial genome by DNA polymerase gamma requires dNTP precursors that are subject to oxidation by reactive oxygen species generated by the mitochondrial respiratory chain. One such oxidation product is 8-oxo-dGTP, which can compete with dTTP for incorporation opposite template adenine to yield A-T to C-G transversions. Recent reports indicate that the ratio of undamaged dGTP to dTTP in mitochondrial dNTP pools from rodent tissues varies from approximately 1:1 to >100:1. Within this wide range, we report here the proportion of 8-oxo-dGTP in the dNTP pool that would be needed to reduce the replication fidelity of human DNA polymerase gamma. When various in vivo mitochondrial dNTP pools reported previously were used here in reactions performed in vitro, 8-oxo-dGTP was readily incorporated opposite template A and the resulting 8-oxo-G-A mismatch was not proofread efficiently by the intrinsic 3' exonuclease activity of pol gamma. At the dNTP ratios reported in rodent tissues, whether highly imbalanced or relatively balanced, the amount of 8-oxo-dGTP needed to reduce fidelity was <1% of dGTP. Moreover, direct measurements reveal that 8-oxo-dGTP is present at such concentrations in the mitochondrial dNTP pools of several rat tissues. The results suggest that oxidized dNTP precursors may contribute to mitochondrial mutagenesis in vivo, which could contribute to mitochondrial dysfunction and disease.

    Topics: Animals; Deoxyguanine Nucleotides; Deoxyribonucleotides; DNA Polymerase gamma; DNA Replication; DNA-Directed DNA Polymerase; DNA, Mitochondrial; Male; Mice; Mitochondria; Mitochondria, Heart; Rats; Rats, Wistar

2008
Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools.
    Biochemistry, 2005, May-03, Volume: 44, Issue:17

    8-OxoGua (8-oxo-7,8-dihydroguanine) is produced in nucleic acids as well as in nucleotide pools of cells, by reactive oxygen species normally formed during cellular metabolic processes. MutT protein of Escherichia coli specifically degrades 8-oxoGua-containing deoxyribo- and ribonucleoside triphosphates to corresponding nucleoside monophosphates, thereby preventing misincorporation of 8-oxoGua into DNA and RNA, which would cause mutation and phenotypic suppression, respectively. Here, we report that the MutT protein has additional activities for cleaning up the nucleotide pools to ensure accurate DNA replication and transcription. It hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP with a K(m) of 0.058 microM, a value considerably lower than that for its normal counterpart, dGDP (170 microM). Furthermore, the MutT possesses an activity to degrade 8-oxo-GDP to the related nucleoside monophosphate, with a K(m) value 8000 times lower than that for GDP. These multiple enzyme activities of the MutT protein would facilitate the high fidelity of DNA and RNA syntheses.

    Topics: Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; Deoxyguanine Nucleotides; DNA Replication; DNA, Bacterial; Escherichia coli Proteins; Guanine; Guanosine Triphosphate; Hydrolysis; Kinetics; Multienzyme Complexes; Phosphoric Monoester Hydrolases; Pyrophosphatases; RNA, Bacterial; Thymine Nucleotides; Transcription, Genetic

2005
Transient state kinetic studies of the MutT-catalyzed nucleoside triphosphate pyrophosphohydrolase reaction.
    Biochemistry, 2005, Nov-22, Volume: 44, Issue:46

    The MutT pyrophosphohydrolase, in the presence of Mg2+, catalyzes the hydrolysis of nucleoside triphosphates by nucleophilic substitution at Pbeta, to yield the nucleotide and PP(i). The best substrate for MutT is the mutagenic 8-oxo-dGTP, on the basis of its Km being 540-fold lower than that of dGTP. Product inhibition studies have led to a proposed uni-bi-iso kinetic mechanism, in which PP(i) dissociates first from the enzyme-product complex (k3), followed by NMP (k4), leaving a product-binding form of the enzyme (F) which converts to the substrate-binding form (E) in a partially rate-limiting step (k5) [Saraswat, V., et al. (2002) Biochemistry 41, 15566-15577]. Single- and multiple-turnover kinetic studies of the hydrolysis of dGTP and 8-oxo-dGTP and global fitting of the data to this mechanism have yielded all of the nine rate constants. Consistent with an "iso" mechanism, single-turnover studies with dGTP and 8-oxo-dGTP hydrolysis showed slow apparent second-order rate constants for substrate binding similar to their kcat/Km values, but well below the diffusion limit (approximately 10(9) M(-1) s(-1)): k(on)app = 7.2 x 10(4) M(-1) s(-1) for dGTP and k(on)app = 2.8 x 10(7) M(-1) s(-1) for 8-oxo-dGTP. These low k(on)app values are fitted by assuming a slow iso step (k5 = 12.1 s(-1)) followed by fast rate constants for substrate binding: k1 = 1.9 x 10(6) M(-1) s(-1) for dGTP and k1 = 0.75 x 10(9) M(-1) s(-1) for 8-oxo-dGTP (the latter near the diffusion limit). With dGTP as the substrate, replacing Mg2+ with Mn2+ does not change k1, consistent with the formation of a second-sphere MutT-M2+-(H2O)-dGTP complex, but slows the iso step (k5) 5.8-fold, and its reverse (k(-5)) 25-fold, suggesting that the iso step involves a change in metal coordination, likely the dissociation of Glu-53 from the enzyme-bound metal so that it can function as the general base. Multiple-turnover studies with dGTP and 8-oxo-dGTP show bursts of product formation, indicating partially rate-limiting steps following the chemical step (k2). With dGTP, the slow steps are the chemical step (k2 = 10.7 s(-1)) and the iso step (k5 = 12.1 s(-1)). With 8-oxo-dGTP, the slow steps are the release of the 8-oxo-dGMP product (k4 = 3.9 s(-1)) and the iso step (k5 = 12.1 s(-1)), while the chemical step is fast (k2 = 32.3 s(-1)). The transient kinetic studies are generally consistent with the steady state kcat and Km values. Comparison of rate constants and free energy diagrams indicate that 8-oxo-dG

    Topics: Deoxycytosine Nucleotides; Deoxyguanine Nucleotides; Enzyme Activation; Escherichia coli Proteins; Kinetics; Magnesium; Manganese; Models, Chemical; Pyrophosphatases; Thermodynamics; Viscosity

2005
Incorporation of the guanosine triphosphate analogs 8-oxo-dGTP and 8-NH2-dGTP by reverse transcriptases and mammalian DNA polymerases.
    The Journal of biological chemistry, 1997, Feb-28, Volume: 272, Issue:9

    We have measured the efficiencies of utilization of 8-oxo-dGTP and 8-NH2-dGTP by human immunodeficiency virus type 1 and murine leukemia virus reverse transcriptases and compared them to those of DNA polymerases alpha and beta. Initially, we carried out primer extension reactions in the presence of dGTP or a dGTP analog and the remaining three dNTPs using synthetic DNA and RNA templates. These assays revealed that, in general, 8-NH2-dGTP is incorporated and extended more efficiently than 8-oxo-dGTP by all enzymes tested. Second, we determined rate constants for the incorporation of each analog opposite a template cytidine residue using steady state single nucleotide extension kinetics. Our results demonstrated the following. 1) Both reverse transcriptases incorporate the nucleotide analogs; discrimination against their incorporation is a function primarily of Km or Vmax depending on the analog and the enzyme. 2) Discrimination against the analogs is more stringent with the DNA template than with a homologous RNA template. 3) Polymerase alpha exhibits a mixed kinetic phenotype, with a large discrimination against 8-oxo-dGTP but a comparatively higher preference for 8-NH2-dGTP. 4) Polymerase beta incorporates both analogs efficiently; there is no discrimination with respect to Km and a significantly lower discrimination with respect to Vmax when compared with the other polymerases.

    Topics: Deoxyguanine Nucleotides; DNA Polymerase II; HIV Reverse Transcriptase; Humans; Kinetics; Leukemia Virus, Murine; Mutagens; RNA-Directed DNA Polymerase; Templates, Genetic

1997