8-oxo-7-8-dihydrodeoxyguanine and ethylbenzene

8-oxo-7-8-dihydrodeoxyguanine has been researched along with ethylbenzene* in 1 studies

Other Studies

1 other study(ies) available for 8-oxo-7-8-dihydrodeoxyguanine and ethylbenzene

ArticleYear
Changes in oxidative stress biomarker and gene expression levels in workers exposed to volatile organic compounds.
    Industrial health, 2011, Volume: 49, Issue:1

    Exposure to volatile organic compounds (VOCs) was known to result in immunologic, respiratory, carcinogenic, reproductive, neurologic, and cardiovascular effects. However, the mechanisms by which VOCs induce these adverse health effects are not well understood. To evaluate the change of oxidative stress biomarker and gene expression levels in workers exposed to VOCs, we obtained urine and blood samples from 21 subjects before and after occupational exposure to VOCs. We measured levels of muconic acid (MuA), hippuric acid (HA), mandelic acid (MaA), and methyl hippuric acid (MHA) as urinary exposure biomarkers for benzene, toluene, ethylbenzene, and xylene (collectively BTEX), and malondialdehyde (MDA) and 8-hydroxydeoxyguanine (8-OHdG) as oxidative stress biomarkers in all subjects. We also evaluated BTEX-mediated RNA expression using cDNA microarray in 14 subjects. HA and MHA levels were higher following occupational exposure to VOCs (p < 0.01). In the linear regression analysis, HA ratios of after- and before-exposure were found to be significantly associated with increase of MDA ratios of after- and before-exposure after controlling for age, body mass index, and smoking (β = 0.06, p = 0.031). Evaluation of the gene expressions by HA showed that 23 gene expressions were found to be significantly associated with HA levels after adjusting for age, body mass index, and smoking (p < 0.001). In particular, expressions of ENO3 and CDNA FLJ39461 fis among the 23 genes were significantly associated with the change in MDA level (p < 0.05). Our study results suggest that exposure to VOCs, specifically toluene, induces oxidative stress and various gene expression change of which some may be responsible for oxidative stress.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Adult; Benzene; Benzene Derivatives; Biomarkers; Gene Expression; Guanine; Hippurates; Humans; Male; Malondialdehyde; Mandelic Acids; Middle Aged; Occupational Exposure; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Sorbic Acid; Toluene; Volatile Organic Compounds; Xylenes

2011