8-hydroxyguanine has been researched along with thymine-glycol* in 18 studies
3 review(s) available for 8-hydroxyguanine and thymine-glycol
Article | Year |
---|---|
The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage.
The six major mammalian DNA repair pathways were discovered as independent processes, each dedicated to remove specific types of lesions, but the past two decades have brought into focus the significant interplay between these pathways. In particular, several studies have demonstrated that certain proteins of the nucleotide excision repair (NER) and base excision repair (BER) pathways work in a cooperative manner in the removal of oxidative lesions. This review focuses on recent data showing how the NER proteins, XPA, XPC, XPG, CSA, CSB and UV-DDB, work to stimulate known glycosylases involved in the removal of certain forms of base damage resulting from oxidative processes, and also discusses how some oxidative lesions are probably directly repaired through NER. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we detail how we believe UV-DDB may be the first responder in altering the structure of damage containing-nucleosomes, allowing access to BER enzymes. Topics: 5-Methylcytosine; DNA Damage; DNA Repair; DNA-Binding Proteins; Guanine; Humans; Oxidation-Reduction; Oxidative Stress; Thymine; Xeroderma Pigmentosum | 2020 |
[Repair networks for base damage and single-strand breaks].
Topics: Animals; DNA Damage; DNA Repair; DNA-Binding Proteins; DNA, Single-Stranded; Guanine; Humans; Poly(ADP-ribose) Polymerases; Thymine; X-ray Repair Cross Complementing Protein 1 | 2001 |
Base excision repair in nuclear and mitochondrial DNA.
Base excision repair mechanisms have been analyzed in nuclear and mitochondrial DNA. We measured the size and position of the newly incorporated DNA repair patch in various DNA substrates containing single oxidative lesions. Repair of 8-oxoguanine and of thymine glycol is almost exclusively via the base excision repair (BER) pathway with little or no involvement of nucleotide excision repair (NER). The repair mode is generally via the single-nucleotide replacement pathway with little incorporation into longer patches. Extension of these studies suggests that DNA polymerase beta plays a critical role not only in the short-patch repair process but also in the long-patch, PCNA-dependent pathway. Mitochondria are targets for a heavy load of oxidative DNA damage. They have efficient BER repair capacity, but cannot repair most bulky lesions normally repaired by NER. In vitro experiments performed using rat and human mitochondrial extracts suggest that the repair incorporation during the removal of uracil in DNA occurs via the short-patch repair BER pathway. Oxidative DNA damage accumulates with age in mitochondrial DNA, but this cannot be explained by an attenuation of DNA repair. In contrast, we observe that mitochondrial incision of 8-oxoG increases with age in rodents. Topics: Adenine; Aging; Animals; Base Sequence; Cell Line; Cell Nucleus; Cell-Free System; DNA; DNA Damage; DNA Glycosylases; DNA Polymerase beta; DNA Repair; DNA-Formamidopyrimidine Glycosylase; DNA, Mitochondrial; Guanine; Hypoxanthine; Lymphocytes; Mammals; Mice; Mitochondria; Molecular Sequence Data; N-Glycosyl Hydrolases; Oxidants; Oxidation-Reduction; Oxidative Stress; Point Mutation; Proliferating Cell Nuclear Antigen; Rats; Thymine | 2001 |
15 other study(ies) available for 8-hydroxyguanine and thymine-glycol
Article | Year |
---|---|
The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
Eukaryotic DNA polymerase eta (Pol η) plays a key role in the efficient and accurate DNA translesion synthesis (TLS) opposite UV-induced thymine dimers. Pol η is also involved in bypass of many other DNA lesions but possesses low fidelity on undamaged DNA templates. To better understand the mechanism of DNA synthesis by Pol η we investigated substitutions of evolutionary conserved active site residues Gln55 and Arg73 in Saccharomyces cerevisiae Pol η. We analyzed the efficiency and fidelity of DNA synthesis by the mutant Pol η variants opposite thymine dimers, abasic site, thymine glycol, 8-oxoguanine and on undamaged DNA. Substitutions Q55A and R73A decreased the catalytic activity and significantly affected DNA damage bypass by Pol η. In particular, the Q55A substitution reduced the efficiency of thymine dimers bypass, R73A had a stronger effect on the TLS-activity opposite abasic site, while both substitutions impaired replication opposite thymine glycol. Importantly, the R73A substitution also increased the fidelity of Pol η. Altogether, these results reveal a key role of residues Gln55 and Arg73 in DNA synthesis opposite various types of DNA lesions and highlight the evolutionary importance of the Pol η TLS function at the cost of DNA replication accuracy. Topics: Arginine; Catalytic Domain; DNA Damage; DNA Repair; DNA Replication; DNA-Directed DNA Polymerase; Glycine; Guanine; Mutagenesis, Site-Directed; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Thymine | 2018 |
Molecular mechanisms by which oxidative DNA damage promotes telomerase activity.
Telomeres are highly susceptible to oxidative DNA damage, which if left unrepaired can lead to dysregulation of telomere length homeostasis. Here we employed single molecule FRET, single molecule pull-down and biochemical analysis to investigate how the most common oxidative DNA lesions, 8-oxoguanine (8oxoG) and thymine glycol (Tg), regulate the structural properties of telomeric DNA and telomerase extension activity. In contrast to 8oxoG which disrupts the telomeric DNA structure, Tg exhibits substantially reduced perturbation of G-quadruplex folding. As a result, 8oxoG induces high accessibility, whereas Tg retains limited accessibility, of telomeric G-quadruplex DNA to complementary single stranded DNA and to telomere binding protein POT1. Surprisingly, the Tg lesion stimulates telomerase loading and activity to a similar degree as an 8oxoG lesion. We demonstrate that this unexpected stimulation arises from Tg-induced conformational alterations and dynamics in telomeric DNA. Despite impacting structure by different mechanisms, both 8oxoG and Tg enhance telomerase binding and extension activity to the same degree, potentially contributing to oncogenesis. Topics: Base Sequence; DNA; DNA Damage; DNA, Single-Stranded; G-Quadruplexes; Guanine; HEK293 Cells; Humans; Oxidative Stress; Protein Binding; Shelterin Complex; Telomerase; Telomere; Telomere Homeostasis; Telomere-Binding Proteins; Thymine | 2017 |
Enhanced sensitivity of Neil1
Oxidative stress and reactive oxygen species (ROS)-induced DNA base damage are thought to be central mediators of UV-induced carcinogenesis and skin aging. However, increased steady-state levels of ROS-induced DNA base damage have not been reported after chronic UV exposure. Accumulation of ROS-induced DNA base damage is governed by rates of lesion formation and repair. Repair is generally performed by Base Excision Repair (BER), which is initiated by DNA glycosylases, such as 8-oxoguanine glycosylase and Nei-Endonuclease VIII-Like 1 (NEIL1). In the current study, UV light (UVB) was used to elicit protracted low-level ROS challenge in wild-type (WT) and Neil1 Topics: Animals; Cytokines; DNA Damage; DNA Glycosylases; DNA Repair; Gene Expression Profiling; Gene Expression Regulation; Guanine; Inflammation; Mice; Mice, Knockout; Neutrophil Infiltration; Oxidative Stress; Pyrimidines; Reactive Oxygen Species; Skin; Thymine; Ultraviolet Rays; Uracil | 2016 |
The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability.
Bacteria and yeast possess one RecQ helicase homolog whereas humans contain five RecQ helicases, all of which are important in preserving genome stability. Three of these, BLM, WRN and RECQL4, are mutated in human diseases manifesting in premature aging and cancer. We are interested in determining to which extent these RecQ helicases function cooperatively. Here, we report a novel physical and functional interaction between BLM and RECQL4. Both BLM and RECQL4 interact in vivo and in vitro. We have mapped the BLM interacting site to the N-terminus of RECQL4, comprising amino acids 361-478, and the region of BLM encompassing amino acids 1-902 interacts with RECQL4. RECQL4 specifically stimulates BLM helicase activity on DNA fork substrates in vitro. The in vivo interaction between RECQL4 and BLM is enhanced during the S-phase of the cell cycle, and after treatment with ionizing radiation. The retention of RECQL4 at DNA double-strand breaks is shortened in BLM-deficient cells. Further, depletion of RECQL4 in BLM-deficient cells leads to reduced proliferative capacity and an increased frequency of sister chromatid exchanges. Together, our results suggest that BLM and RECQL4 have coordinated activities that promote genome stability. Topics: Cell Line; DNA; DNA Damage; Genomic Instability; Guanine; HeLa Cells; Humans; Protein Interaction Domains and Motifs; RecQ Helicases; S Phase; Sister Chromatid Exchange; Thymine | 2012 |
Structural and functional properties of CiNTH, an endonuclease III homologue of the ascidian Ciona intestinalis: critical role of N-terminal region.
Oxidatively damaged bases in DNA can cause cell death, mutation and/or cancer induction. To overcome such deleterious effects of DNA base oxidation, cells are equipped with base excision repair (BER) initiated by DNA glycosylases. Endonuclease III (Nth), a major DNA glycosylase, mainly excises oxidatively damaged pyrimidines from DNA. The aims of this study were to obtain an overview of the repair mechanism of oxidatively damaged bases and to elucidate the function of BER in maintaining genome stability during embryogenesis and development. In this study, we used the ascidian Ciona intestinalis because at every developmental stage it is possible to observe the phenotype of individuals with DNA damage or mutations. Sequence alignment analysis revealed that the amino acid sequence of Ciona intestinalis Nth homologue (CiNTH) had high homology with those of Escherichia coli, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and human Nth homologues. It was evident that two domains, the Helix-hairpin-Helix and 4Fe-4S cluster domains that are critical regions for the Nth activity, are well conserved in CiNTH. CiNTH efficiently complemented the sensitivity of E. coli nth nei mutant to H(2)O(2). CiNTH was bifunctional, with DNA glycosylase and AP lyase activities. It removed thymine glycol, 5-formyluracil and 8-oxoguanine paired with G from DNA via a β-elimination reaction. Interestingly, the N-terminal 44 amino acids were essential for the DNA glycosylase activity of CiNTH. Topics: Amino Acid Sequence; Animals; Ciona intestinalis; Deoxyribonuclease (Pyrimidine Dimer); DNA; DNA Damage; DNA Glycosylases; DNA Repair; Escherichia coli; Gene Expression Regulation; Guanine; Humans; Hydrogen Peroxide; Molecular Sequence Data; Reactive Oxygen Species; Sequence Alignment; Thymine; Uracil | 2012 |
FANCJ helicase uniquely senses oxidative base damage in either strand of duplex DNA and is stimulated by replication protein A to unwind the damaged DNA substrate in a strand-specific manner.
FANCJ mutations are genetically linked to the Fanconi anemia complementation group J and predispose individuals to breast cancer. Understanding the role of FANCJ in DNA metabolism and how FANCJ dysfunction leads to tumorigenesis requires mechanistic studies of FANCJ helicase and its protein partners. In this work, we have examined the ability of FANCJ to unwind DNA molecules with specific base damage that can be mutagenic or lethal. FANCJ was inhibited by a single thymine glycol, but not 8-oxoguanine, in either the translocating or nontranslocating strands of the helicase substrate. In contrast, the human RecQ helicases (BLM, RECQ1, and WRN) display strand-specific inhibition of unwinding by the thymine glycol damage, whereas other DNA helicases (DinG, DnaB, and UvrD) are not significantly inhibited by thymine glycol in either strand. In the presence of replication protein A (RPA), but not Escherichia coli single-stranded DNA-binding protein, FANCJ efficiently unwound the DNA substrate harboring the thymine glycol damage in the nontranslocating strand; however, inhibition of FANCJ helicase activity by the translocating strand thymine glycol was not relieved. Strand-specific stimulation of human RECQ1 helicase activity was also observed, and RPA bound with high affinity to single-stranded DNA containing a single thymine glycol. Based on the biochemical studies, we propose a model for the specific functional interaction between RPA and FANCJ on the thymine glycol substrates. These studies are relevant to the roles of RPA, FANCJ, and other DNA helicases in the metabolism of damaged DNA that can interfere with basic cellular processes of DNA metabolism. Topics: Basic-Leucine Zipper Transcription Factors; Breast Neoplasms; DNA; DNA Adducts; DNA Damage; DNA Helicases; Enzyme Activation; Fanconi Anemia; Fanconi Anemia Complementation Group Proteins; Female; Guanine; Humans; Oxidative Stress; Replication Protein A; Substrate Specificity; Thymine | 2009 |
Tolerance for 8-oxoguanine but not thymine glycol in alignment-based gap filling of partially complementary double-strand break ends by DNA polymerase lambda in human nuclear extracts.
Ionizing radiation induces various clustered DNA lesions, including double-strand breaks (DSBs) accompanied by nearby oxidative base damage. Previous work showed that, in HeLa nuclear extracts, DSBs with partially complementary 3' overhangs and a one-base gap in each strand are accurately rejoined, with the gaps being filled by DNA polymerase lambda. To determine the possible effect of oxidative base damage on this process, plasmid substrates were constructed containing overhangs with 8-oxoguanine or thymine glycol in base-pairing positions of 3-base (-ACG or -GTA) 3' overhangs. In this context, 8-oxoguanine was well tolerated by the end-joining machinery when present at one end of the break, but not when present at both ends. Thymine glycol was less well tolerated than 8-oxoguanine, reducing gap filling and accurate rejoining by at least 10-fold. The results suggest that complex DSBs can be accurately rejoined despite the presence of accompanying base damage, but that nonplanar bases constitute a major barrier to this process and promote error-prone joining. A chimeric DNA polymerase, in which the catalytic domain of polymerase lambda was replaced with that of polymerase beta, could not substitute for polymerase lambda in these assays, suggesting that this domain is specifically adapted for gap filling on aligned DSB ends. Topics: Base Pair Mismatch; Cell Extracts; Cell Nucleus; DNA Breaks, Double-Stranded; DNA Polymerase beta; DNA Repair; Guanine; HeLa Cells; Humans; Recombinant Fusion Proteins; Thymine | 2008 |
RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS.
The blockage of transcription elongation by RNA polymerase II (RNAPII) at DNA lesions on the transcribed strand is a serious challenge to accurate transcription. Transcription-coupled DNA repair (TCR), which is assumed to be initiated by the blockage of transcription, rapidly removes lesions on the transcribed strand of expressed genes and allows the resumption of transcription. Although helix-distorting bulky damage such as a cyclobutane pyrimidine dimer is known to block transcription elongation and to be repaired by TCR, it is not clear whether oxidative DNA lesions are repaired by TCR. First, we examined whether transcription elongation by RNAPII is stalled at sites of 2-hydroxyadenine (2-OH-A), 8-oxoadenine (8-oxoA), 8-oxoguanine (8-oxoG), or thymine glycol (Tg) on the transcribed strand. Our results indicate that RNAPII incorporated nucleotides opposite the lesions and then stalled. In addition, we found that transcription elongation factor TFIIS (SII) enabled RNAPII to bypass 8-oxoG but not the other types of damage, while transcription initiation and elongation factor TFIIF did not bypass 8-oxoG. These results suggest that SII is important for preventing cellular death due to oxidative DNA damage, assisting RNAPII to bypass 8-oxoG. Topics: Adenine; Base Sequence; DNA Damage; DNA Repair; Guanine; HeLa Cells; Humans; Models, Chemical; Models, Genetic; Molecular Sequence Data; Oxygen; RNA Polymerase II; Thymine; Transcription, Genetic; Transcriptional Elongation Factors | 2007 |
RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors.
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8-oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases. Topics: DNA Damage; DNA Helicases; DNA Repair; DNA Repair Enzymes; Elongin; Guanine; HeLa Cells; Humans; Oxidative Stress; Poly-ADP-Ribose Binding Proteins; RNA Polymerase II; Thymine; Transcription Factors; Transcription Factors, TFII; Transcription, Genetic; Transcriptional Elongation Factors; Uracil | 2006 |
Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts.
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II. Topics: Cell Extracts; Cell Nucleus; Cytosine; Deoxyribonucleosides; DNA Damage; DNA Repair; Guanine; HeLa Cells; Humans; Oxidation-Reduction; Pyrimidine Dimers; RNA Polymerase II; Templates, Genetic; Thymine; Transcription, Genetic | 2004 |
Endonuclease IV enhances base excision repair of endonuclease III from Methanobacterium thermoautotrophicum.
Damaged DNA strands are repaired by base excision (BER) in organisms, a process initiated by repair enzymes, which include DNA glycosylases and endonucleases. We expressed and characterized two putative endonuclease genes from Methanobacterium thermoautotrophicum, Mt0764 and Mt1010, encoding homologues of endonuclease III (endo III) and endonuclease IV (endo IV) of Escherichia coli. The Mt0764 and Mt1010 proteins showed endo III activity by removing thymine glycol from DNA strand and AP endonuclease activity, respectively. The Mt0764 protein not only cleaved the oligonucleotide duplex, containing a thymine glycol/adenine pair efficiently, but also showed activity on the 8-oxoguanine-containing oligonucleotide duplex. In this study, we report upon the stimulation of endo III activity by endo IV using two recombinant proteins (Mt1010 and Mt0764) from M. thermoautotrophicum. Mt1010 stimulated the DNA glycosylase activity of Mt0764 for DNA substrates containing 8-oxoguanine residues and increasing the formation of the Mt0764 protein-DNA complex. The interaction between Mt1010 and Mt0764 was observed by using an in vitro binding assay. These results suggest that association between endo III and endo IV may occur in vivo, and this contributes to efficient base excision repair for the oxidative damage of DNA. Topics: Amino Acid Sequence; Deoxyribonuclease (Pyrimidine Dimer); Deoxyribonuclease IV (Phage T4-Induced); DNA; DNA Damage; DNA Repair; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Escherichia coli; Escherichia coli Proteins; Guanine; Methanobacterium; Molecular Sequence Data; Oligonucleotides; Oxygen; Protein Binding; Recombinant Proteins; Sequence Homology, Amino Acid; Sodium Chloride; Thymine | 2003 |
Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells.
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis. Topics: Adenosine Triphosphatases; Amino Acid Motifs; Amino Acid Sequence; Apoptosis; Cell Extracts; Cell Line; Cell Survival; Cockayne Syndrome; Cytosine; DNA Damage; DNA Helicases; DNA Repair; DNA Repair Enzymes; Fibroblasts; Gene Expression Profiling; Genetic Complementation Test; Guanine; Humans; Hydrogen Peroxide; Mutation; Oligonucleotide Array Sequence Analysis; Poly-ADP-Ribose Binding Proteins; Protein Structure, Tertiary; Radiation Tolerance; RNA; Thymine; Ultraviolet Rays | 2002 |
Double-base lesions are produced in DNA by free radicals.
Evidence has been accumulating at the oligomer level that free radical-initiated DNA damage includes lesions in which two adjacent bases are both modified. Prominent examples are lesions in which a pyrimidine base is degraded to a formamido remnant and an adjacent guanine base is oxidized. An assay has been devised to detect double-base lesions based on the fact that the phosphoester bond 3' to a nuclesoside bearing the formamido lesion is resistant to hydrolysis by nuclease P1. The residual modified dinucleoside monophosphates obtained from a nuclease P1 (plus acid phosphatase) digest of DNA can be (32)P-postlabeled using T4 polynucleotide kinase. Using this assay the formamido single lesion and the formamido-8-oxoguanine double lesion were detected in calf thymus DNA after X-irradiation in oxygenated aqueous solution. The lesions were measured in the forms d(P(F)pG) and d(P(F)pG(H)), where P(F) stands for a pyrimidine nucleoside having the base degraded to a formamido remnant and G(H) stands for 8-oxo-deoxyguanosine. The yields in calf thymus DNA irradiated 60 Gy were 8.6 and 3.2 pmol/microgram DNA, respectively. Topics: Adenosine Triphosphate; Animals; Cattle; Chromatography, High Pressure Liquid; DNA; DNA Damage; Dose-Response Relationship, Radiation; Formamides; Free Radicals; Guanine; Pyrimidine Nucleosides; Single-Strand Specific DNA and RNA Endonucleases; Spectrometry, Mass, Fast Atom Bombardment; Thymine; Thymus Gland; X-Rays | 2000 |
Oxidative modification of DNA bases in rat liver and lung during chemical carcinogenesis and aging.
The extent of DNA modification in cancerous rat live and lung tissues was investigated and compared to their respective normal tissues. Liver tumors were induced by 2-fluorenylacetamide (2-FAA) or N-nitroso-N-2-fluorenylacetamide (N-NO-2-FAA), and lung tumors were induced by sodium nitrite plus trimethylamine. In the DNA samples isolated from these tissues, two pyrimidine-derived and four purine-derived modified DNA bases were identified and quantified by gas chromatography/mass spectrometry with selected-ion monitoring. These compounds were characterized as 5-hydroxyuracil (5-OHUra), thymine glycol (TG), 4,6-diamino-5-formamidopyrimidine (FapyAde), 2,6-diamino-4-hydroxy-5- formamidopyrimidine (FapyGua), 8-hydroxyadenine (8-OHAde), and 8-hydroxyguanine (8-OHGua). Elevated amounts of modified DNA bases were found in most cancerous tissues when compared to the controls. Chemicals used for tumor induction were responsible for inducing DNA lesions that could be promutagenic in vivo and could lead to various types of mutations. When endogenous oxidative damage to DNA during aging was examined, a roughly 2-fold increase of thymine glycol, 8-OHAde and 8-OHGua was found in aged (12 months) rat liver tissues compared to young tissues (1 month). The same results were also found in lung tissues, except that the amount of thymine glycol exhibited more than a 10-fold increase in aged tissues when compared to young tissues. The association of the modified bases with the processes of aging and carcinogenesis deserves further investigation. Topics: 2-Acetylaminofluorene; Adenine; Aging; Animals; Antineoplastic Agents; Disease Models, Animal; DNA Damage; DNA, Neoplasm; Gas Chromatography-Mass Spectrometry; Guanine; Hydrolysis; Liver; Liver Neoplasms, Experimental; Lung; Lung Neoplasms; Male; Methylamines; Nitrates; Oxidation-Reduction; Pyrimidines; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Thymine; Uracil | 1995 |
Urine biomarkers for oxidative DNA damage.
Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Biomarkers; Deoxyguanosine; DNA Damage; Gas Chromatography-Mass Spectrometry; Guanine; Humans; Mice; Rats; Thymidine; Thymine | 1988 |