8-hydroxyguanine has been researched along with formic-acid* in 1 studies
1 other study(ies) available for 8-hydroxyguanine and formic-acid
Article | Year |
---|---|
Comparison of the levels of 8-hydroxyguanine in DNA as measured by gas chromatography mass spectrometry following hydrolysis of DNA by Escherichia coli Fpg protein or formic acid.
8-hydroxyguanine (8-OH-Gua) is one of many lesions generated in DNA by oxidative processes including free radicals. It is the most extensively investigated lesion, due to its miscoding properties and its potential role in mutagenesis, carcinogenesis and aging, and also to the existence of analytical methods using HPLC and gas chromatography mass spectrometry (GC/MS). Some studies raised the possibility of artifacts generated during sample preparation. We investigated several experimental conditions in order to eliminate possible artifacts during the measurement of 8-OH-Gua by GC/MS. Derivatization has been reported to produce artifacts by oxidation of guanine to 8-OH-Gua in acid-hydrolysates of DNA, although the extent of artifacts seems to depend on experimental conditions. For removal of 8-OH-Gua from DNA, we used either formic acid hydrolysis or specific enzymatic hydrolysis with Escherichia coli Fpg protein. Derivatization of enzyme-hydrolysates should not generate additional 8-OH-Gua because of the absence of guanine, which is not released by the enzyme, whereas guanine released by acid may be oxidized to yield 8-OH-Gua. The measurement of 8-OH-Gua in calf thymus DNA by GC/isotope-dilution MS (GC/IDMS) using these two different hydrolyses yielded similar levels of 8-OH-Gua. This indicated that no artifacts occurred during derivatization of acid-hydrolysates of DNA. Pyridine instead of acetonitrile and room temperature were used during derivatization. Pyridine reduced the level of 8-OH-Gua, when compared with acetonitrile, indicating its potential to prevent oxidation. Two different stable-isotope labeled analogs of 8-OH-Gua used as internal standards for GC/IDMS analysis yielded similar results. A comparison of the present results with the results of recent trials by the European Standards Committee for Oxidative DNA Damage (ESCODD) is also presented. Topics: Animals; Cattle; DNA; DNA-Formamidopyrimidine Glycosylase; Escherichia coli; Escherichia coli Proteins; Formates; Gas Chromatography-Mass Spectrometry; Guanine; Hydrolysis; N-Glycosyl Hydrolases | 2000 |