8-hydroxyguanine and 5-hydroxyuracil

8-hydroxyguanine has been researched along with 5-hydroxyuracil* in 13 studies

Trials

1 trial(s) available for 8-hydroxyguanine and 5-hydroxyuracil

ArticleYear
Oxidative DNA base damage in lymphocytes of HIV-infected drug users.
    Free radical research, 1999, Volume: 31, Issue:3

    In the present study, we have studied the level of oxidative DNA base damage in lymphocytes of HIV-infected intravenous drug users (IDUs) and a seronegative control group. Chromatin was isolated from the lymphocytes and then analyzed by gas chromatography/isotope-dilution mass spectrometry with selected-ion monitoring (GC/IDMS-SIM). Significantly greater levels of four oxidatively modified DNA bases were observed in chromatin samples from the symptomatic HIV-infected patients than in those from the seronegative patients. These were 5-hydroxyuracil, 5-hydroxycytosine, 8-hydroxyadenine and 8-hydroxyguanine. In the case of 5-hydroxyuracil and 8-hydroxyguanine, a statistically significant difference was also found between the control group and the asymptomatic HIV-positive patients. These results suggest that oxidative stress may play an important role in the pathogenesis of acquired immune deficiency syndrome (AIDS), and that administration of antioxidant drugs to HIV-infected patients may offer protection against AIDS-related carcinogenesis.

    Topics: Adenine; Adolescent; Adult; Chromatin; Cytosine; DNA Damage; Guanine; HIV Infections; Humans; Lymphocytes; Male; Oxidation-Reduction; Oxidative Stress; Substance Abuse, Intravenous; Uracil

1999

Other Studies

12 other study(ies) available for 8-hydroxyguanine and 5-hydroxyuracil

ArticleYear
Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters.
    Nucleic acids research, 2013, Volume: 41, Issue:20

    Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly. Plasmids harboring these U-oG/hU MDS-carrying duplexes were introduced into Escherichia coli cells either wild type or deficient for DNA n-glycosylases. Induction of DSB was estimated from plasmid survival and mutagenesis determined by sequencing of surviving clones. We show that a large majority of MDS is converted to DSB, whereas almost all surviving clones are mutated at hU. We demonstrate that mutagenesis at hU is correlated with excision of the U placed on the opposite strand. We propose that excision of U by Ung initiates the loss of U-oG-carrying strand, resulting in enhanced mutagenesis at the lesion present on the opposite strand. Our results highlight the importance of the kinetics of excision by base excision repair DNA n-glycosylases in the processing and fate of MDS and provide evidence for the role of strand loss/replication fork collapse during the processing of MDS on their mutational consequences.

    Topics: Cell Line, Transformed; Deoxyribonuclease (Pyrimidine Dimer); DNA Breaks, Double-Stranded; DNA Damage; DNA Repair; DNA Replication; Escherichia coli Proteins; Guanine; Humans; Mutagenesis; Mutation Rate; Uracil

2013
Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2010, Volume: 24, Issue:7

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our results suggest that CSB plays a significant role in mitochondrial base excision repair (BER) regulation. In particular, we find reduced 8-oxo-guanine, uracil, and 5-hydroxy-uracil BER incision activities in CSB-deficient cells compared to wild-type cells. This deficiency correlates with deficient association of the BER activities with the mitochondrial inner membrane, suggesting that CSB may participate in the anchoring of the DNA repair complex. Increased mutation frequency in mtDNA of CSB-deficient cells demonstrates functional significance of the presence of CSB in the mitochondria. The results in total suggest that CSB plays a direct role in mitochondrial BER by helping recruit, stabilize, and/or retain BER proteins in repair complexes associated with the inner mitochondrial membrane, perhaps providing a novel basis for understanding the complex phenotype of this debilitating disorder.

    Topics: Cell Line; DNA Helicases; DNA Repair; DNA Repair Enzymes; DNA, Mitochondrial; Guanine; Humans; Mitochondrial Membranes; Oxidative Stress; Poly-ADP-Ribose Binding Proteins; Uracil

2010
Modulation of DNA glycosylase activities in mesenchymal stem cells.
    Experimental cell research, 2009, Sep-10, Volume: 315, Issue:15

    Adipose-tissue derived mesenchymal stem cells (AT-MSCs) are a promising tool for use in cell-based therapies. However, in vitro expansion is required to obtain clinically relevant cell numbers, and this might increase the chance of genomic instability. DNA repair is crucial for maintaining DNA integrity. Here we have compared the initial step of base excision repair in uncultured and cultured AT-MSCs by analysis of base removal activities and expression levels of relevant DNA glycosylases. Uracil, 5-hydroxyuracil and ethenoadenine removal activities were upregulated in cultured cells compared to uncultured cells. In contrast, both the 8-oxo-7,8-dihydroguanine (8-oxoG) removal activity and the concentration of 8-oxoG bases in the DNA were reduced in the cultured cells. Gene expression analysis showed no substantial changes in mRNA expression. The glycosylase activities remained stable through at least 12 passages, suggesting that DNA repair is proficient through the period required for in vitro expansion of AT-MSCs to clinically relevant numbers.

    Topics: Adipose Tissue; Animals; Cells, Cultured; DNA Damage; DNA Glycosylases; DNA Repair; Gene Expression Profiling; Guanine; Humans; Immunophenotyping; Mesenchymal Stem Cells; Oligonucleotide Array Sequence Analysis; Uracil

2009
Interplay between DNA N-glycosylases/AP lyases at multiply damaged sites and biological consequences.
    Nucleic acids research, 2007, Volume: 35, Issue:10

    Evidence has emerged that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. The first repair event occurring at a multiply damaged site (MDS) is of major importance and will largely contribute to the hazardousness of MDS. Here, using protein extracts from wild type or hOGG1-overexpressing Chinese hamster ovary cells, we investigated the initial incision rate at base damage and the formation of repair intermediates in various complex MDS. These MDS comprise a 1 nt gap and 3-4 base damage, including 8-oxoguanine (oG) and 5-hydroxyuracil (hU). We report a hierarchy in base excision that mainly depends on the nature and the distribution of the damage. We also show that excision at both oG and hU, and consequently DSB formation, can be modulated by hOGG1 overexpression. Anyhow, for all the MDS analyzed, DSB formation is limited, due to impaired base excision. Interestingly, repair intermediates contain a short single-stranded region carrying a potentially mutagenic base damage. This in vitro study provides new insight into the processing of MDS and suggests that repair intermediates resulting from the processing of such MDS are rather mutagenic than toxic.

    Topics: Animals; CHO Cells; Cricetinae; Cricetulus; DNA Breaks, Double-Stranded; DNA Damage; DNA Glycosylases; DNA Repair; DNA-(Apurinic or Apyrimidinic Site) Lyase; Guanine; Humans; Uracil

2007
Physical and functional interactions between Escherichia coli MutY and endonuclease VIII.
    The Biochemical journal, 2006, Jan-01, Volume: 393, Issue:Pt 1

    Both GO (7,8-dihydro-8-oxoguanine) and hoU (5-hydroxyuracil) are highly mutagenic because DNA polymerase frequently misincorporates adenine opposite these damaged bases. In Escherichia coli, MutY DNA glycosylase can remove misincorporated adenine opposite G or GO on the template strand during DNA replication. MutY remains bound to the product that contains an AP (apurinic/apyrimidinic) site. Endo VIII (endonuclease VIII) can remove oxidized pyrimidine and weakly remove GO by its DNA glycosylase and beta/delta-elimination activities. In the present paper, we demonstrate that Endo VIII can promote MutY dissociation from AP/G, but not from AP/GO, and can promote beta/delta-elimination on the products of MutY. MutY interacts physically with Endo VIII through its C-terminal domain. MutY has a moderate affinity for DNA containing a hoU/A mismatch, which is a substrate of Endo VIII. MutY competes with Endo VIII and inhibits Endo VIII activity on DNA that contains a hoU/A mismatch. Moreover, MutY has a weak adenine glycosylase activity on hoU/A mismatches. These results suggest that MutY may have some role in reducing the mutagenic effects of hoU.

    Topics: Deoxyribonuclease (Pyrimidine Dimer); DNA Glycosylases; DNA, Bacterial; Escherichia coli; Escherichia coli Proteins; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Guanine; Protein Binding; Protein Conformation; Uracil

2006
RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors.
    The EMBO journal, 2006, Nov-29, Volume: 25, Issue:23

    Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8-oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases.

    Topics: DNA Damage; DNA Helicases; DNA Repair; DNA Repair Enzymes; Elongin; Guanine; HeLa Cells; Humans; Oxidative Stress; Poly-ADP-Ribose Binding Proteins; RNA Polymerase II; Thymine; Transcription Factors; Transcription Factors, TFII; Transcription, Genetic; Transcriptional Elongation Factors; Uracil

2006
Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins.
    Nucleic acids research, 2005, Volume: 33, Issue:1

    Clustered DNA lesions, possibly induced by ionizing radiation, constitute a trial for repair processes. Indeed, recent studies suggest that repair of such lesions may be compromised, potentially leading to the formation of lethal double-strand breaks (DSBs). A complex multiply damaged site (MDS) composed of 8-oxoguanine and 8-oxoadenine on one strand, 5-hydroxyuracil, 5-formyluracil and a 1 nt gap on the other strand, within 17 bp was built and used to challenge several steps of base excision repair (BER) pathway with human whole-cell extracts and purified repair enzymes as well. We show a hierarchy in the processing of lesions within the MDS, in particular at the base excision step. In the present configuration, efficient excision of 5-hydroxyuracil and low cleavage at 8-oxoguanine prevent DSB formation and generate a short single-stranded region carrying the 8-oxoguanine. On the other hand, rejoining of the 1 nt gap occurs by the short-patch BER pathway, but is slightly retarded by the presence of the oxidized bases. Taken together, our results suggest a hierarchy in the processing of the lesions within the MDS, which prevents the formation of DSB, but would dramatically enhance mutagenesis. They also indicate that the mutagenic (or lethal) consequences of a complex MDS will largely depend on the first event in the processing of the MDS.

    Topics: Bacteria; Cell Extracts; Cell Line, Transformed; DNA Damage; DNA Repair; DNA Repair Enzymes; Guanine; Humans; Radiation, Ionizing; Uracil

2005
NEIL1 excises 3' end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1.
    Nucleic acids research, 2005, Volume: 33, Issue:15

    Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in the vicinity of the 3' end of a DNA single-strand break, suggesting that other enzymes are involved in the processing of such lesions. In this study, we identify and characterize NEIL1 as a major DNA glycosylase that excises oxidative base damage located in close proximity to the 3' end of a DNA single-strand break.

    Topics: Base Sequence; Deoxyribonuclease (Pyrimidine Dimer); DNA Damage; DNA Glycosylases; DNA Repair; Guanine; Humans; Oligonucleotides; Oxidative Stress; Substrate Specificity; Uracil

2005
Further studies of KMnO4 oxidation of synthetic DNAs containing oxidatively damaged bases.
    Nucleic acids symposium series, 1999, Issue:42

    Recently we found that KMnO4 oxidation of DNA oligomers containing a 7,8-dihydro-8-oxoguanine (8-oxo-G) residue induces damage to the neighboring base residues; other modified bases, 7,8-dihydro-8-oxoadenine (8-oxo-A) and 5-hydroxyuracil (5-oh-U), show similar behavior in DNA. The present study indicated that the ability to induce damage, which could also occur by the oxidation of a 5-oh-C residue, was low as in the case of 5-oh-U. On the other hand, in order to examine the pathways and the intermediates for the oxidative degradation of 8-oxo-A, we have carried out the KMnO4 oxidation using an 8-oxo-2'-deoxyadenosine derivative as a model and have determined the structures of the three major products.

    Topics: Adenine; Base Sequence; DNA; DNA Damage; Guanine; Oligodeoxyribonucleotides; Oxidation-Reduction; Potassium Permanganate; Uracil

1999
Oxidative DNA base damage in cancerous tissues of patients undergoing brachytherapy.
    Cancer letters, 1998, Oct-23, Volume: 132, Issue:1-2

    This aim of this study was to measure the typical free radical-induced products of DNA bases in cellular DNA of cervical cancer tissues directly irradiated by applying brachytherapy to the patients. Significant increases in the amounts of modified bases over the control level were observed in the samples isolated after irradiation for all patients. These increases differed among patients and among products. The repair capacity and/or the amount of hypoxic cells inside the tumor may account for the different levels of modified bases. It is possible that the observed variabilities may account for the differences in clinical responses to brachytherapy.

    Topics: Adenine; Brachytherapy; Cytosine; DNA Damage; DNA, Neoplasm; Female; Gas Chromatography-Mass Spectrometry; Guanine; Humans; Oxidation-Reduction; Pyrimidines; Uracil; Uterine Cervical Neoplasms

1998
Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection.
    The Biochemical journal, 1996, Aug-15, Volume: 318 ( Pt 1)

    Oxidative DNA damage is thought to be an important contributor to cancer development and to be affected by dietary constituents, so its accurate measurement is important. DNA methylation is recognized as an important mechanism affecting gene expression. In the present paper we describe an HPLC-with-electrochemical-detection procedure that allows rapid and sensitive measurement of four oxidized (2,6-diamino-4-hydroxy-5-formamidopyrimidine, 5-hydroxyuracil, 8-hydroxyguanine, 8-hydroxyadenine) and three methylated (7-methylguanine, 1-methylguanine, O6-methylguanine) bases in acid hydrolysates of DNA. Guanine was also detected, but was clearly separated from the other bases.

    Topics: Chromatography, High Pressure Liquid; DNA; DNA Damage; Electrochemistry; Guanine; Methylation; Oxidation-Reduction; Purines; Pyrimidines; Uracil

1996
Oxidative modification of DNA bases in rat liver and lung during chemical carcinogenesis and aging.
    Chemico-biological interactions, 1995, Volume: 94, Issue:2

    The extent of DNA modification in cancerous rat live and lung tissues was investigated and compared to their respective normal tissues. Liver tumors were induced by 2-fluorenylacetamide (2-FAA) or N-nitroso-N-2-fluorenylacetamide (N-NO-2-FAA), and lung tumors were induced by sodium nitrite plus trimethylamine. In the DNA samples isolated from these tissues, two pyrimidine-derived and four purine-derived modified DNA bases were identified and quantified by gas chromatography/mass spectrometry with selected-ion monitoring. These compounds were characterized as 5-hydroxyuracil (5-OHUra), thymine glycol (TG), 4,6-diamino-5-formamidopyrimidine (FapyAde), 2,6-diamino-4-hydroxy-5- formamidopyrimidine (FapyGua), 8-hydroxyadenine (8-OHAde), and 8-hydroxyguanine (8-OHGua). Elevated amounts of modified DNA bases were found in most cancerous tissues when compared to the controls. Chemicals used for tumor induction were responsible for inducing DNA lesions that could be promutagenic in vivo and could lead to various types of mutations. When endogenous oxidative damage to DNA during aging was examined, a roughly 2-fold increase of thymine glycol, 8-OHAde and 8-OHGua was found in aged (12 months) rat liver tissues compared to young tissues (1 month). The same results were also found in lung tissues, except that the amount of thymine glycol exhibited more than a 10-fold increase in aged tissues when compared to young tissues. The association of the modified bases with the processes of aging and carcinogenesis deserves further investigation.

    Topics: 2-Acetylaminofluorene; Adenine; Aging; Animals; Antineoplastic Agents; Disease Models, Animal; DNA Damage; DNA, Neoplasm; Gas Chromatography-Mass Spectrometry; Guanine; Hydrolysis; Liver; Liver Neoplasms, Experimental; Lung; Lung Neoplasms; Male; Methylamines; Nitrates; Oxidation-Reduction; Pyrimidines; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Thymine; Uracil

1995