8-hydroxyguanine and 3-nitrotyrosine

8-hydroxyguanine has been researched along with 3-nitrotyrosine* in 9 studies

Other Studies

9 other study(ies) available for 8-hydroxyguanine and 3-nitrotyrosine

ArticleYear
Simultaneous Detection of 3-Nitrotyrosine and 3-Nitro-4-hydroxyphenylacetic Acid in Human Urine by Online SPE LC-MS/MS and Their Association with Oxidative and Methylated DNA Lesions.
    Chemical research in toxicology, 2015, May-18, Volume: 28, Issue:5

    Reactive nitrogen species (RNS) can modify proteins at tyrosine and tryptophan residues, and they are involved in the pathogenesis of various human diseases. In this study, we present the first liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method that enables the simultaneous measurement of urinary 3-nitrotyrosine (3-NTYR) and its metabolite 3-nitro-4-hydroxyphenylacetic acid (NHPA). After the addition of stable isotope-labeled internal standards, urine samples were purified and enriched using manual solid-phase extraction (SPE) and HPLC fractionation followed by online SPE LC-MS/MS analysis. The limits of quantification in urine were 3.1 and 2.5 pg/mL for 3-NTYR and NHPA, respectively. Inter- and intraday imprecision was <15%. The mean relative recoveries of 3-NTYR and NHPA in urine were 89-98% and 90-98%, respectively. We further applied this method to 65 urinary samples from healthy subjects. Urinary samples were also analyzed for N-nitrosodimethylamine (NDMA) as well as oxidative and methylated DNA lesions, namely, 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), N7-methylguanine (N7-MeG), and N3-methyladenine (N3-MeA), using reported LC-MS/MS methods. Urinary 3-NTYR and NHPA levels were measured at concentrations of 63.2 ± 51.5 and 77.4 ± 60.8 pg/mL, respectively. Urinary 3-NTYR and NHPA levels were highly correlated with each other and with 8-oxoGua and 8-oxodGuo. Our findings demonstrated that a relationship exists between oxidative and nitrative stress. However, 3-NTYR and NHPA were correlated with N7-MeG and N3-MeA but not with NDMA, suggesting that NDMA may not be a representative biomarker of N-nitroso compounds that are induced by RNS.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Adenine; Adult; Chromatography, High Pressure Liquid; Chromatography, Liquid; Deoxyguanosine; Dimethylnitrosamine; DNA Methylation; Guanine; Humans; Limit of Detection; Middle Aged; Nitrophenols; Oxidation-Reduction; Phenylacetates; Solid Phase Extraction; Tandem Mass Spectrometry; Tyrosine; Young Adult

2015
Reactive species and oxidative stress in optic nerve vulnerable to secondary degeneration.
    Experimental neurology, 2014, Volume: 261

    Secondary degeneration contributes substantially to structural and functional deficits following traumatic injury to the CNS. While it has been proposed that oxidative stress is a feature of secondary degeneration, contributing reactive species and resultant oxidized products have not been clearly identified in vivo. The study is designed to identify contributors to, and consequences of, oxidative stress in a white matter tract vulnerable to secondary degeneration. Partial dorsal transection of the optic nerve (ON) was used to model secondary degeneration in ventral nerve unaffected by the primary injury. Reactive species were assessed using fluorescent labelling and liquid chromatography/tandem mass spectroscopy (LC/MS/MS). Antioxidant enzymes and oxidized products were semi-quantified immunohistochemically. Mitophagy was assessed by electron microscopy. Fluorescent indicators of reactive oxygen and/or nitrogen species increased at 1, 3 and 7days after injury, in ventral ON. LC/MS/MS confirmed increases in reactive species linked to infiltrating microglia/macrophages in dorsal ON. Similarly, immunoreactivity for glutathione peroxidase and haem oxygenase-1 increased in ventral ON at 3 and 7days after injury, respectively. Despite increased antioxidant immunoreactivity, DNA oxidation was evident from 1day, lipid oxidation at 3days, and protein nitration at 7days after injury. Nitrosative and oxidative damage was particularly evident in CC1-positive oligodendrocytes, at times after injury at which structural abnormalities of the Node of Ranvier/paranode complex have been reported. The incidence of mitochondrial autophagic profiles was also significantly increased from 3days. Despite modest increases in antioxidant enzymes, increased reactive species are accompanied by oxidative and nitrosative damage to DNA, lipid and protein, associated with increasing abnormal mitochondria, which together may contribute to the deficits of secondary degeneration.

    Topics: Analysis of Variance; Animals; Chromatography, Liquid; Disease Models, Animal; Ectodysplasins; Ethidium; Female; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Guanine; Microscopy, Electron, Transmission; Mitochondria; Myelin Basic Protein; Nerve Degeneration; Optic Nerve Injuries; Oxidative Stress; Rats; Reactive Oxygen Species; Tandem Mass Spectrometry; Time Factors; Tyrosine

2014
Metallothionein-I + II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas.
    Leukemia & lymphoma, 2010, Volume: 51, Issue:2

    Primary central nervous system lymphoma (PCNSL) in immunocompetent patients is highly malignant and has a poor prognosis. The PCNSL molecular features are reminiscent to some degree of diffuse large B-cell lymphoma (DLBCL), yet PCNSL shows unique molecular profiles and a distinct clinical behavior. This article characterizes the histopathology and expression profiles of metallothionein-I + II (MT-I + II) and their receptor megalin along with proliferation, oxidative stress, and apoptosis in PCNSL and in central nervous system (CNS) lymphomas due to relapse from DLBCL (collectively referred to as CNS lymphoma). We show for the first time that MT-I + II and megalin are significantly altered in CNS lymphoma relative to controls (reactive lymph nodes and non-lymphoma brain tissue with neuropathology). MT-I + II are secreted in the CNS and are found mainly in the lymphomatous cells, while their receptor megalin is increased in cerebral cells. This morphology likely reflects the CNS lymphoma microenvironment and molecular interactions between lymphomatous and neuronal cells.

    Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Brain; Cell Cycle Proteins; Cell Proliferation; Central Nervous System Neoplasms; DNA-Binding Proteins; Guanine; Humans; Immunohistochemistry; In Situ Nick-End Labeling; Low Density Lipoprotein Receptor-Related Protein-2; Lymph Nodes; Lymphoma, Large B-Cell, Diffuse; Malondialdehyde; Metallothionein; Middle Aged; Minichromosome Maintenance Complex Component 7; Nuclear Proteins; Oxidative Stress; Tyrosine

2010
Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures.
    Journal of neuroscience research, 2005, Feb-15, Volume: 79, Issue:4

    We examined metallothionein (MT)-induced neuroprotection during kainic acid (KA)-induced excitotoxicity by studying transgenic mice with MT-I overexpression (TgMT mice). KA induces epileptic seizures and hippocampal excitotoxicity, followed by inflammation and delayed brain damage. We show for the first time that even though TgMT mice were more susceptible to KA, the cerebral MT-I overexpression decreases the hippocampal inflammation and delayed neuronal degeneration and cell death as measured 3 days after KA administration. Hence, the proinflammatory responses of microglia/macrophages and lymphocytes and their expression of interleukin (IL)-1, IL-6, IL-12, tumor necrosis factor-alpha and matrix metalloproteinases (MMP-3, MMP-9) were significantly reduced in hippocampi of TgMT mice relative to wild-type mice. Also by 3 days after KA, the TgMT mice showed significantly less delayed damage, such as oxidative stress (formation of nitrotyrosine, malondialdehyde, and 8-oxoguanine), neurodegeneration (neuronal accumulation of abnormal proteins), and apoptotic cell death (judged by TUNEL and activated caspase-3). This reduced bystander damage in TgMT mice could be due to antiinflammatory and antioxidant actions of MT-I but also to direct MT-I effects on the neurons, in that significant extracellular MT presence was detected. Furthermore, MT-I overexpression stimulated astroglia and increased immunostaining of antiinflammatory IL-10, growth factors, and neurotrophins (basic fibroblastic growth factor, transforming growth factor-beta, nerve growth factor, brain-derived neurotrophic factor, glial-derived neurotrophic factor) in hippocampus. Accordingly, MT-I has different functions that likely contribute to the increased neuron survival and improved CNS condition of TgMT mice. The data presented here add new insight into MT-induced neuroprotection and indicate that MT-I therapy could be used against neurological disorders.

    Topics: Amyloid beta-Peptides; Analysis of Variance; Animals; Astrocytes; Cell Count; Cell Death; Central Nervous System Diseases; Epilepsy; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Growth Substances; Guanine; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Interleukins; Kainic Acid; Matrix Metalloproteinase 3; Matrix Metalloproteinase 9; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Neurofibrillary Tangles; Staining and Labeling; Tyrosine

2005
Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults.
    Journal of neuroscience research, 2005, Oct-15, Volume: 82, Issue:2

    Mutations in parkin are involved in some cases of autosomal recessive juvenile parkinsonism (AR-JP), but it is not known how they result in nigral cell death. We examined the effect of parkin overexpression on the response of cells to various insults. Wild-type and AR-JP-associated mutant parkins (Del3-5, T240R, and Q311X) were overexpressed in NT-2 and SK-N-MC cells. Overexpressed wild-type parkin delayed cell death induced by serum withdrawal, H(2)O(2), 1-methyl-4-phenylpyridinium (MPP(+)), or 4-hydroxy-2-trans-nonenal (HNE) but did not delay cell death caused by the proteasome inhibitor lactacystin. Increases in damage to proteins (protein carbonyls and 3-nitrotyrosine) were attenuated by wild-type parkin after serum withdrawal or exposure to H(2)O(2), MPP(+), or HNE but not after exposure to lactacystin. The mutant parkins (of all types) markedly accelerated cell death in response to all the insults, accompanied by increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation, and 3-nitrotyrosine and decreased levels of GSH. The viability loss induced by all the insults showed apoptotic features. The presence of parkin mutations in substantia nigra in Parkinson's disease may increase neuronal vulnerability to a range of toxic insults.

    Topics: 1-Methyl-4-phenylpyridinium; Acetylcysteine; Aldehydes; Apoptosis; Cell Death; Cell Line, Tumor; Drug Resistance; Enzyme Inhibitors; Genetic Predisposition to Disease; Glutamic Acid; Guanine; Humans; Hydrogen Peroxide; Mutation; Nerve Degeneration; Neurons; Neurotoxins; Oxidative Stress; Parkinsonian Disorders; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Substantia Nigra; Tyrosine; Ubiquitin-Protein Ligases

2005
Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress biomarkers in the brain of old rats.
    Annals of the New York Academy of Sciences, 2004, Volume: 1033

    L-carnitine and acetyl-L-carnitine (ALC) are both used to improve mitochondrial function. Although it has been argued that ALC is better than l-carnitine in absorption and activity, there has been no experiment to compare the two compounds at the same dose. In the present experiment, the effects of ALC and L-carnitine on the levels of free, acyl, and total L-carnitine in plasma and brain, rat ambulatory activity, and biomarkers of oxidative stress are investigated. Aged rats (23 months old) were given ALC or L-carnitine at 0.15% in drinking water for 4 weeks. L-carnitine and ALC were similar in elevating carnitine levels in plasma and brain. Both increased ambulatory activity similarly. However, ALC decreased the lipid peroxidation (malondialdehyde, MDA) in the old rat brain, while L-carnitine did not. ALC decreased the extent of oxidized nucleotides (oxo8dG/oxo8G) immunostaining in the hippocampal CA1 and cortex, while L-carnitine did not. ALC decreased nitrotyrosine immunostaining in the hippocampal CA1 and white matter, while L-carnitine did not. In conclusion, ALC and L-carnitine were similar in increasing ambulatory activity in old rats and elevating carnitine levels in blood and brain. However, ALC was effective, unlike L-carnitine, in decreasing oxidative damage, including MDA, oxo8dG/oxo8G, and nitrotyrosine, in old rat brain. These data suggest that ALC may be a better dietary supplement than L-carnitine.

    Topics: Acetylcarnitine; Animals; Biomarkers; Brain; Carnitine; Guanine; Male; Malondialdehyde; Motor Activity; Oxidative Stress; Rats; Rats, Inbred F344; Tyrosine

2004
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down's syndrome and familial amyotrophic lateral sclerosis.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Patients with Down's syndrome (DS) show elevated levels of copper, zinc-containing superoxide dismutase (SOD1) and appear to have increased lipid peroxidation and oxidative damage to DNA as well as elevated glutathione peroxidase activity. Increasing SOD1 levels by gene transfection in NT-2 and SK-N-MC cell lines also led to a rise in glutathione peroxidase activity, but this was nevertheless accompanied by decreased proliferation rates, increased lipid peroxidation and protein carbonyls, and a trend to a rise in 8-hydroxyguanine and protein-bound 3-nitrotyrosine. Transfection of these cell lines with DNA encoding two mutant SOD1 enzymes (G37R and G85R) associated with familial amyotrophic lateral sclerosis (FALS), produced similar, but more severe changes, i.e. even lower growth rates, higher lipid peroxidation, 3-nitrotyrosine and protein carbonyl levels, decreased GSH levels, raised GSSG levels and higher glutathione peroxidase activities. Since G85R has little SOD activity, these changes cannot be related to increased O(2)(-) scavenging. In no case was SOD2 (mitochondrial Mn-SOD) level altered. Our cellular systems reproduce many of the biochemical changes observed in patients with DS or ALS, and in transgenic mice overexpressing mutant SOD1. They also show the potentially deleterious effects of SOD1 overexpression on cellular proliferation, which may be relevant to abnormal development in DS.

    Topics: Aldehydes; Amyotrophic Lateral Sclerosis; Antioxidants; Cell Division; Cell Line; Cell Survival; Down Syndrome; Gene Expression; Glutathione; Glutathione Disulfide; Guanine; Humans; Ketones; Lipid Peroxidation; Mutation; Neuroblastoma; Oxidative Stress; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Transfection; Tyrosine

2001
Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Mutations in alpha-synuclein (A30P and A53T) are involved in some cases of familial Parkinson's disease (FPD), but it is not known how they result in nigral cell death. We examined the effect of alpha-synuclein overexpression on the response of cells to various insults. Wild-type alpha-synuclein and alpha-synuclein mutations associated with FPD were overexpressed in NT-2/D1 and SK-N-MC cells. Overexpression of wild-type alpha-synuclein delayed cell death induced by serum withdrawal or H(2)O(2), but did not delay cell death induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). By contrast, wild-type alpha-synuclein transfectants were sensitive to viability loss induced by staurosporine, lactacystin or 4-hydroxy-2-trans-nonenal (HNE). Decreases in glutathione (GSH) levels were attenuated by wild-type alpha-synuclein after serum deprivation, but were aggravated following lactacystin or staurosporine treatment. Mutant alpha-synucleins increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation and 3-nitrotyrosine, and markedly accelerated cell death in response to all the insults examined. The decrease in GSH levels was enhanced in mutant alpha-synuclein transfectants. The loss of viability induced by toxic insults was by apoptosic mechanism. The presence of abnormal alpha-synucleins in substantia nigra in PD may increase neuronal vulnerability to a range of toxic agents.

    Topics: 1-Methyl-4-phenylpyridinium; Aldehydes; alpha-Synuclein; Cell Division; Cell Line; Cell Survival; Clone Cells; Culture Media, Serum-Free; Enzyme Inhibitors; Gene Expression; Glutathione; Guanine; Humans; Hydrogen Peroxide; Ketones; Lipid Peroxidation; Mitochondria; Mutation; Nerve Tissue Proteins; Neuroblastoma; Oxidants; Oxidative Stress; Parkinsonian Disorders; Synucleins; Teratocarcinoma; Transfection; Tyrosine

2001
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and pro
    Journal of neurochemistry, 2001, Volume: 78, Issue:2

    Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.

    Topics: Aldehydes; Amino Acid Substitution; Cell Death; Cell Survival; Cross-Linking Reagents; Culture Media, Serum-Free; Genes, bcl-2; Guanine; Humans; Hydrogen Peroxide; Kinetics; Lipid Peroxidation; Motor Neuron Disease; Mutagenesis, Site-Directed; Neuroblastoma; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Recombinant Proteins; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Tumor Cells, Cultured; Tyrosine

2001