8-hydroxyguanine has been researched along with 2--deoxycytidine-5--triphosphate* in 7 studies
7 other study(ies) available for 8-hydroxyguanine and 2--deoxycytidine-5--triphosphate
Article | Year |
---|---|
Kinetics of dCTP incorporation opposite to 7,8-dihydro-8-oxoguanine with different 5' nearest neighbors by yeast polymerase eta.
Translesion synthesis (TLS), an important mechanism in cells refers to bypassing the DNA damage blockage on replication fork. Yeast TLS polymerase eta (poleta) is able to bypass 7,8-dihydro-8-oxoguanine (8-oxoG) on DNA with high fidelity by incorporation of dCTP opposite 8-oxoG rather than dATP to avoid G to T transversion mutation. We have shown the 5' nearest base next to 8-oxoG affects the G to T mutation by yeast and human poleta previously. In this study, the insertion efficiency of dCTP opposite 8-oxoG in various DNA sequences was kinetically investigated using yeast poleta. Based on K(m) and V(max), we demonstrated that the insertion efficiencies were also influenced by the 5' neighboring nucleotide next to 8-oxoG. The lowest V(max)/K(m) was observed when cytosine was 5' neighbouring base to 8-oxoG, in agreement with previous results in which dCTP incorporation to 8-oxoG was lowest when cytosine is on the 5'-side next to the lesion. Topics: Deoxycytosine Nucleotides; DNA; DNA-Directed DNA Polymerase; Guanine; Kinetics; Yeasts | 2008 |
Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides.
8-Oxoguanine (8-oxoG) is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase beta (pol beta). To interpret in atomic and energetic detail how pol beta processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol beta 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues.. Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low) as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 kBT, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP.. These results suggest that the lower insertion efficiency (larger Km) for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol beta, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G. Topics: Binding Sites; Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; DNA Polymerase beta; Guanine; Kinetics; Nucleic Acid Conformation; Templates, Genetic; Tyrosine | 2007 |
8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins.
Specialized DNA polymerases (DNA pols) are required for lesion bypass in human cells. Auxiliary factors have an important, but so far poorly understood, role. Here we analyse the effects of human proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A) on six different human DNA pols--belonging to the B, Y and X classes--during in vitro bypass of different lesions. The mutagenic lesion 8-oxo-guanine (8-oxo-G) has high miscoding potential. A major and specific effect was found for 8-oxo-G bypass with DNA pols lambda and eta. PCNA and RP-A allowed correct incorporation of dCTP opposite a 8-oxo-G template 1,200-fold more efficiently than the incorrect dATP by DNA pol lambda, and 68-fold by DNA pol eta, respectively. Experiments with DNA-pol-lambda-null cell extracts suggested an important role for DNA pol lambda. On the other hand, DNA pol iota, together with DNA pols alpha, delta and beta, showed a much lower correct bypass efficiency. Our findings show the existence of an accurate mechanism to reduce the deleterious consequences of oxidative damage and, in addition, point to an important role for PCNA and RP-A in determining a functional hierarchy among different DNA pols in lesion bypass. Topics: Animals; Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; DNA Damage; DNA Replication; DNA-Directed DNA Polymerase; Fibroblasts; Guanine; Humans; Mice; Oxidation-Reduction; Proliferating Cell Nuclear Antigen; Replication Protein A; Substrate Specificity; Templates, Genetic | 2007 |
Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.
7,8-dihydro-8-oxoguanine (oxoG), the predominant lesion formed following oxidative damage of DNA by reactive oxygen species, is processed differently by replicative and bypass polymerases. Our kinetic primer extension studies demonstrate that the bypass polymerase Dpo4 preferentially inserts C opposite oxoG, and also preferentially extends from the oxoG*C base pair, thus achieving error-free bypass of this lesion. We have determined the crystal structures of preinsertion binary, insertion ternary, and postinsertion binary complexes of oxoG-modified template-primer DNA and Dpo4. These structures provide insights into the translocation mechanics of the bypass polymerase during a complete cycle of nucleotide incorporation. Specifically, during noncovalent dCTP insertion opposite oxoG (or G), the little-finger domain-DNA phosphate contacts translocate by one nucleotide step, while the thumb domain-DNA phosphate contacts remain fixed. By contrast, during the nucleotidyl transfer reaction that covalently incorporates C opposite oxoG, the thumb-domain-phosphate contacts are translocated by one nucleotide step, while the little-finger contacts with phosphate groups remain fixed. These stepwise conformational transitions accompanying nucleoside triphosphate binding and covalent nucleobase incorporation during a full replication cycle of Dpo4-catalyzed bypass of the oxoG lesion are distinct from the translocation events in replicative polymerases. Topics: Archaeal Proteins; Base Sequence; Crystallization; Crystallography, X-Ray; Deoxycytosine Nucleotides; DNA Polymerase beta; DNA-Directed DNA Polymerase; Guanine; Nucleic Acid Conformation; Protein Conformation; Sulfolobus solfataricus; Templates, Genetic; Translocation, Genetic | 2006 |
Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools.
8-OxoGua (8-oxo-7,8-dihydroguanine) is produced in nucleic acids as well as in nucleotide pools of cells, by reactive oxygen species normally formed during cellular metabolic processes. MutT protein of Escherichia coli specifically degrades 8-oxoGua-containing deoxyribo- and ribonucleoside triphosphates to corresponding nucleoside monophosphates, thereby preventing misincorporation of 8-oxoGua into DNA and RNA, which would cause mutation and phenotypic suppression, respectively. Here, we report that the MutT protein has additional activities for cleaning up the nucleotide pools to ensure accurate DNA replication and transcription. It hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP with a K(m) of 0.058 microM, a value considerably lower than that for its normal counterpart, dGDP (170 microM). Furthermore, the MutT possesses an activity to degrade 8-oxo-GDP to the related nucleoside monophosphate, with a K(m) value 8000 times lower than that for GDP. These multiple enzyme activities of the MutT protein would facilitate the high fidelity of DNA and RNA syntheses. Topics: Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; Deoxyguanine Nucleotides; DNA Replication; DNA, Bacterial; Escherichia coli Proteins; Guanine; Guanosine Triphosphate; Hydrolysis; Kinetics; Multienzyme Complexes; Phosphoric Monoester Hydrolases; Pyrophosphatases; RNA, Bacterial; Thymine Nucleotides; Transcription, Genetic | 2005 |
Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
Pre-steady-state kinetics of incorporation of dCTP and dATP opposite site-specific 8-oxo-7,8-dihydroguanine (8-oxoGua), in contrast to dCTP insertion opposite G, were examined as well as extension beyond the lesion using the replicative enzymes bacteriophage polymerase T7 exo- (T7-) and HIV-1 reverse transcriptase (RT). These results were compared to previous findings for Escherichia coli repair polymerases I (KF-) and II (pol II-) exo- [Lowe, L. G., & Guengerich, F. P. (1996) Biochemistry 35, 9840-9849]. HIV-1 RT showed a very high preference for insertion of dATP opposite 8-oxoGua, followed by pol II-, T7-, and KF-. Steady-state assays showed k(cat) consistently lower than pre-steady-state polymerization rates (k(p)) for insertion of dCTP opposite G or 8-oxoGua and insertion of dATP opposite 8-oxoGua. Pre-steady-state kinetic curves for the addition of dCTP opposite 8-oxoGua or G by KF-, pol II-, and T7- were all biphasic, with a rapid initial single-turnover burst followed by a slower multiple turnover rate, while addition of dATP opposite 8-oxoGua by these polymerases did not display burst kinetics. With HIV-1 RT, addition of dATP opposite 8-oxoGua displayed burst kinetics while addition of dCTP did not. Analyses of the chemical step by substitution of phosphorothioate analogs for normal dNTPs suggest that the chemistry is rate-limiting during addition of dCTP and dATP opposite 8-oxoGua by KF-, pol II-, and T7-; HIV- RT did not show a chemical rate-limiting step during addition of dATP opposite 8-oxoGua. Kinetic assays performed with various dCTP concentrations indicate that dCTP has a higher Kd and lower k(p) for incorporation opposite 8-oxoGua compared to G with all four enzymes. The K(d,app)dATP values for KF-, pol II-, and T7- incorporation of dATP opposite 8-oxoGua, estimated in competition assays, were found to be 3-10-fold greater than the K(d)dCTP. Likewise, the K(d,app)dCTP for HIV-1 RT incorporation of dCTP opposite 8-oxoGua was found to be 10-fold greater than the K(d)dATP. The repair enzymes (KF- and pol II-) efficiently extended the 8-oxoGua x A pair; extension of 8-oxoGua x C was severely impaired, whereas the replicative enzymes (T7- and HIV-1 RT) extended both pairs, with faster rates for the extension of the 8-oxoGua x A pair. On the basis of these findings, the fidelity of all four enzymes during replication of 8-oxoGua depends on contributions from the apparent Kd, the ease of base pair extension, and either the rate of conformation Topics: Bacteriophage T7; Binding Sites; Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; DNA; DNA Replication; DNA-Directed DNA Polymerase; Guanine; HIV Reverse Transcriptase; Humans; Kinetics; Mutagenesis, Site-Directed; Phosphorylation; Substrate Specificity; Titrimetry | 1997 |
Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
Escherichia coli polymerases (pol) I exo-(KF-) and pol II exo- (pol II-) were used as model enzymes with a DNA primer/template complex (12/16-mer) to examine the kinetics of incorporation of dCTP and dATP at the site of an 8-oxo-7,8-dihydroguanine (8-oxoGua) residue; compared to guanine (Gua). In steady-state assays (with DNA in excess) the rate of incorporation (kcat) was dCTP > dATP and the K(m),dATP < K(m),dCTP during incorporation opposite 8-oxoGua with both polymerases. Pre-steady-state kinetic curves (rapid-quench analysis) for the addition of C opposite 8-oxoGua or Gua by KF- and pol II- were all biphasic, with a rapid initial single-turnover burst followed by a slower multiple turnover rate, while addition of A opposite 8-oxoGua did not display burst kinetics with either enzyme. Reduced rates of incorporation of the dCTP alpha S and dATP alpha S phosphorothioate analogs suggest that the rates of incorporation of A and C opposite 8-oxoGua are limited during polymerization by the rate of phosphodiester bond formation. Neither polymerase appears to discriminate between adducted and nonadducted DNA substrate for binding. Kinetic assays performed with varying dCTP concentrations indicate that dCTP has a higher K(d) and lower k(p) (polymerization rate) for incorporation opposite 8-oxoGua compared to Gua. Furthermore, the dATP binding affinities with KF- and pol II- were approximately 10- and approximately 3-fold lower, respectively, than that of dCTP as determined in competition assays with mixtures of dCTP and dATP. Microscopic rate constants were estimated by mathematical analysis of dNTP concentration dependence curves. Both polymerases preferentially extended the A:8-oxoGua pair while extension of the C:8-oxoGua pair was greatly impaired. Based on these findings, the fidelity of KF- and pol II- during replication of 8-oxoGua depends on contributions from nucleotide binding, the rate of phosphodiester bond formation, and the ease of base pair extension. Topics: Base Composition; Base Sequence; Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; Deoxyribonucleotides; DNA Polymerase I; DNA Polymerase II; DNA Primers; DNA, Bacterial; Escherichia coli; Guanine; Kinetics; Molecular Sequence Data; Oligodeoxyribonucleotides; Substrate Specificity; Templates, Genetic | 1996 |