8-bromocyclic-gmp has been researched along with thiazolyl-blue* in 2 studies
2 other study(ies) available for 8-bromocyclic-gmp and thiazolyl-blue
Article | Year |
---|---|
Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways.
Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S-nitroso-acetyl-d-l-penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5'-phosphate (8Br-cGMP) (GMP) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. Topics: Adenosine; Aminoquinolines; Analysis of Variance; Animals; Cell Survival; Cells, Cultured; Chick Embryo; Cyclic GMP; Cyclic N-Oxides; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Free Radical Scavengers; Imidazoles; Neurons; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitrites; Penicillamine; Retina; Signal Transduction; Tetrazolium Salts; Thiazoles; Tritium | 2007 |
Antiproliferative effects of NO and ANP in cultured human airway smooth muscle.
Airway smooth muscle (ASM) hypertrophy and hyperplasia are important determinants of bronchial responsiveness in asthma, and agents that interfere with these processes may prevent airway remodeling. We tested the hypothesis that activators of soluble and particulate guanylyl cyclases would inhibit human ASM cell (HASMC) proliferation. We report that the nitric oxide (NO) donors S-nitroso-N-acetylpenicillamine (SNAP; 10(-6) to 10(-4) M) and sodium nitroprusside (10(-5) to 10(-3) M) and human atrial natriuretic peptide [ANP-(1-28); 10(-8) to 10(-6) M], which activate soluble and particulate guanylyl cyclases, respectively, inhibited serum- and thrombin-induced proliferation of cultured HASMCs. The antimitogenic effect of SNAP was reversed by hemoglobin (10(-5) M), an NO scavenger, suggesting that NO donation was involved. The antiproliferative effects of SNAP and ANP-(1-28) were potentiated by the cGMP-specific phosphodiesterase zaprinast and mimicked by 8-bromo-cGMP (10(-6) to 10(-3) M), suggesting that cGMP-dependent mechanisms were involved. However, first, ANP-(1-28) produced a smaller antiproliferative effect than SNAP in contrast to their abilities to elevate cGMP, and second, rat ANP-(104-126), which binds selectively to ANP clearance receptors without elevating cGMP, had a small antiproliferative effect, suggesting that cGMP-independent mechanisms were also involved. These results provide evidence for a novel antiproliferative effect of NO and ANP in HASMCs mediated through cGMP-dependent and cGMP-independent mechanisms. Topics: Asthma; Atrial Natriuretic Factor; Blood Proteins; Cell Division; Cells, Cultured; Coloring Agents; Cyclic GMP; Diuretics; Hemoglobins; Hemostatics; Humans; Hyperplasia; Lung; Mitogens; Muscle, Smooth; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Penicillamine; Peptide Fragments; Phosphodiesterase Inhibitors; Purinones; Tetrazolium Salts; Thiazoles; Thrombin; Vasodilator Agents | 1999 |