8-bromocyclic-gmp has been researched along with 8-bromoguanosino-3--5--cyclic-monophosphorothioate* in 10 studies
10 other study(ies) available for 8-bromocyclic-gmp and 8-bromoguanosino-3--5--cyclic-monophosphorothioate
Article | Year |
---|---|
Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.
Topics: Anti-Inflammatory Agents; Carbon Monoxide; Cell Hypoxia; Cell Line; Cyclic GMP; Diterpenes; Dual-Specificity Phosphatases; Endothelin-1; Heme Oxygenase-1; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mitogen-Activated Protein Kinase Phosphatases; p38 Mitogen-Activated Protein Kinases; Thionucleotides | 2018 |
Synthesis and Characterization of 8-Nitroguanosine 3',5'-Cyclic Monophosphorothioate Rp-Isomer as a Potent Inhibitor of Protein Kinase G1α.
Guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinases (PKG) are kinases regulating diverse physiological functions including vascular smooth muscle relaxation, neuronal synaptic plasticity, and platelet activities. Certain PKG inhibitors, such as Rp-diastereomers of derivatives of guanosine 3',5'-cyclic monophosphorothioate (Rp-cGMPS), have been designed and used to study PKG-regulated cell signaling. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is an endogenous cGMP derivative formed as a result of excess production of reactive oxygen species and nitric oxide. 8-Nitro-cGMP causes persistent activation of PKG1α through covalent attachment of cGMP moieties to cysteine residues of the enzyme (i.e., the process called protein S-guanylation). In this study, we synthesized a nitrated analogue of Rp-cGMPS, 8-nitroguanosine 3',5'-cyclic monophosphorothioate Rp-isomer (Rp-8-nitro-cGMPS), and investigated its effects on PKG1α activity. We synthesized Rp-8-nitro-cGMPS by reacting Rp-8-bromoguanosine 3',5'-cyclic monophosphorothioate (Rp-8-bromo-cGMPS) with sodium nitrite. Rp-8-Nitro-cGMPS reacted with the thiol compounds cysteine and glutathione to form Rp-8-thioalkoxy-cGMPS adducts to a similar extent as did 8-nitro-cGMP. As an important finding, a protein S-guanylation-like modification was clearly observed, by using Western blotting, in the reaction between recombinant PKG1α and Rp-8-nitro-cGMPS. Rp-8-Nitro-cGMPS inhibited PKG1α activity with an inhibitory constant of 22 µM in a competitive manner. An organ bath assay with mouse aorta demonstrated that Rp-8-nitro-cGMPS inhibited vascular relaxation induced by acetylcholine or 8-bromo-cGMP more than Rp-8-bromo-cGMPS did. These findings suggest that Rp-8-nitro-cGMPS inhibits PKG through induction of an S-guanylation-like modification by attaching the Rp-cGMPS moiety to the enzyme. Additional study is warranted to explore the potential application of Rp-8-nitro-cGMPS to biochemical and therapeutic research involving PKG1α activation. Topics: Acetylcholine; Animals; Aorta; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Guanosine; Isomerism; Male; Mice, Inbred C57BL; Nitro Compounds; Protein Processing, Post-Translational; Signal Transduction; Thionucleotides; Vasodilation | 2017 |
Activation of cGMP-PKG signaling pathway contributes to neuronal hyperexcitability and hyperalgesia after in vivo prolonged compression or in vitro acute dissociation of dorsal root ganglion in rats.
Injury or inflammation affecting sensory neurons in the dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spinal central sensitization and neuropathic pain. Recent studies have indicated that, following chronic compression of DRG (CCD) or acute dissociation of DRG (ADD) treatment, both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by activity in cGMP-PKG signaling pathway. Here, we provide evidence supporting the idea that CCD or ADD treatment activates cGMP-PKA signaling pathway in the DRG neurons. The results showed that CCD or ADD results in increase of levels of cGMP concentration and expression of PKG-I mRNA, as well as PKG-I protein in DRG. CCD or ADD treated-DRG neurons become hyperexcitable and exhibit increased responsiveness to the activators of cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMP. Hyperexcitability of the injured neurons is inhibited by cGMP-PKG pathway inhibitors, ODQ and Rp-8-pCPT-cGMPS. In vivo delivery of Rp-8-pCPT-cGMPS into the compressed ganglion within the intervertebral foramen suppresses CCD-induced thermal hyperalgesia. These findings indicate that the in vivo CCD or in vitro ADD treatment can activate the cGMP-PKG signaling pathway, and that continuing activation of cGMP-PKG pathway is required to maintain DRG neuronal hyperexcitability and/or hyperalgesia after these two dissimilar forms of injury-related stress. Topics: Animals; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Ganglia, Spinal; Hyperalgesia; Rats; Rats, Sprague-Dawley; Signal Transduction; Thionucleotides | 2012 |
Modulation of cardiac ERG1 K(+) channels by cGMP signaling.
Different K(+) currents have been implicated in the myocardial action potential repolarization including the I(Kr). ERG1 alpha subunits, identified as the molecular correlate of I(Kr), have been shown to form heteromultimeric channels in the heart and their activity is modulated by a complex interplay of signal transduction events. Using electrophysiological techniques, we examined the effects of the cGMP-analogue 8-Br-cGMP on rat and guinea-pig papillary action potential duration (APD), on the biophysical properties of heterologously expressed homo- and heteromeric ERG1 channels, and on cardiac I(Kr). 8-Br-cGMP prolonged APD by about 25% after pharmacological inhibition of L-type Ca(2+) currents and I(Ks). The prolongation was completely abolished by prior application of the hERG channel blocker E-4031 or the protein kinase G (PKG) inhibitor Rp-8-Br-cGMPS. Expression analysis revealed the presence of both ERG1a and -1b subunits in rat papillary muscle. Both 8-Br-cGMP and ANP inhibited heterologously expressed ERG1b and even stronger ERG1a/1b channels, whereas ERG1a channels remained unaffected. The inhibitory 8-Br-cGMP effects were PKG-dependent and involved a profound ERG current reduction, which was also observed with cardiac AP clamp recordings. Measurements of I(Kr) from isolated mouse cardiomyocytes using Cs(+) as charge carrier exhibited faster deactivation kinetics in atrial than in ventricular myocytes consistent with a higher relative expression of ERG1b transcripts in atria than in ventricles. 8-Br-cGMP significantly reduced I(Kr) in atrial, but not in ventricular myocytes. These findings provide first evidence that through heteromeric assembly ERG1 channels become a critical target of cGMP-PKG signaling linking cGMP accumulation to cardiac I(Kr) modulation. Topics: Action Potentials; Animals; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Female; Guinea Pigs; Heart Ventricles; Male; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Piperidines; Pyridines; Rats; Rats, Wistar; Signal Transduction; Thionucleotides; Trans-Activators; Transcriptional Regulator ERG | 2010 |
Acute impairment of contractile responses by 17beta-estradiol is cAMP and protein kinase G dependent in vascular smooth muscle cells of the porcine coronary arteries.
The aim of the present study was to investigate the involvement of adenosine 3',5'-cyclic monophosphate (cAMP) cascade in the acute impairment of contraction by 17beta-estradiol in porcine coronary arteries, and to elucidate the signaling pathway leading to the activation of this cascade by the hormone. Isometric tension was recorded in isolated rings of porcine coronary arteries. The contraction to U46619 was reduced significantly following 30 min incubation with 1 nM 17beta-estradiol or 1 nM isoproterenol. There was no additive effect when 17beta-estradiol and isoproterenol were administered together. The effect of 17beta-estradiol was mimicked by both the cyclic AMP analogue 8-Br-cAMP and the guanosine 3',5'-cyclic monophosphate (cyclic GMP) analogue 8-Br-cGMP. In rings with and without endothelium, the modulatory effect of 17beta-estradiol was abolished by the adenylyl cyclase inhibitor, SQ 22536, but was unaffected by the guanylyl cyclase inhibitor, ODQ. Both the cAMP antagonist Rp-8-Br-cAMPS and the cGMP antagonist inhibitor Rp-8-Br-cGMPS inhibited the effect of 17beta-estradiol. The effect of 17beta-estradiol was unaffected by the protein kinase A inhibitor, KT5720, but was abolished by the protein kinase G (PKG) inhibitor, KT5823, which also abolished the effect of isoproterenol. These data support our earlier findings that 17beta-estradiol (1 nM) acutely impairs contractile responses of porcine coronary arteries in vitro. This acute effect of 17beta-estradiol involves cAMP in vascular smooth muscles and the activation of PKG. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Adenine; Adenylyl Cyclase Inhibitors; Animals; Carbazoles; Coronary Vessels; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Drug Interactions; Estradiol; Indoles; Isometric Contraction; Isoproterenol; Muscle, Smooth, Vascular; Swine; Thionucleotides; Time Factors | 2005 |
p11 expression in human bronchial epithelial cells is increased by nitric oxide in a cGMP-dependent pathway involving protein kinase G activation.
The effect of nitric oxide on p11 expression was studied in an immortalized human bronchial epithelial cell line (BEAS-2B cells). Three nitric oxide donors were used: spermine NONOate (SP), (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), and S-nitrosoglutathione (SNOG). All three nitric oxide donors had similar effects resulting in dose-dependent and time-dependent accumulation of p11 protein and an increase of steady-state p11 mRNA. Studies using a reporter gene containing the region from -1499 to +89 of the p11 promoter demonstrated an increase in transcriptional activity after stimulation with NO donors for 4 h. These effects were abolished at the promoter and protein level using protein kinase G inhibitors (KT5823 and R(p)-8-pCPT-cGMPS). Incubation of transfected cells with a cell permeable cGMP analogue (8-Br-cGMP) resulted in a dose-related increase of promoter activity. An electrophoretic mobility shift assay of nuclear proteins extracted from BEAS-2B cells identified an AP-1 site located at -82 to -77 of the p11 promoter region as an NO- and cGMP- dependent response element. These data were confirmed using a c-jun dominant negative mutant vector and a c-jun expression plasmid. Therefore, we conclude that nitric oxide-induced p11 expression in human bronchial epithelial cells is mediated at least in part through increased binding of activator protein one to the p11 promoter. Topics: Alkaloids; Annexin A2; Bronchi; Calcium-Binding Proteins; Carbazoles; Cell Nucleus; Chloramphenicol O-Acetyltransferase; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Epithelial Cells; Genes, Dominant; Genes, jun; Genes, Reporter; Immunoblotting; Indoles; Mutation; Nitric Oxide; Nitrogen Oxides; Plasmids; Promoter Regions, Genetic; Protein Binding; RNA, Messenger; S100 Proteins; Spermine; Thionucleotides; Time Factors; Transcription Factor AP-1; Transfection | 2001 |
Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway.
The mechanism(s) responsible for the persistent coexpression of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the failing heart is unknown.. To determine whether NO was sufficient to provoke TNF-alpha biosynthesis, we examined the effects of an NO donor, S-nitroso-N-acetyl penicillamine (SNAP), in buffer-perfused Langendorff hearts. SNAP (1 micromol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF-alpha mRNA and protein biosynthesis in adult cat hearts. The effects of SNAP were completely abrogated by a NO quenching agent, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), and mimicked by sodium nitroprusside. Electrophoretic mobility shift assays demonstrated that SNAP treatment led to the rapid induction of nuclear factor kappa-beta (NF-kappaB) but not AP-1. The importance of the cGMP pathway in terms of mediating NO-induced TNF-alpha biosynthesis was shown by studies that demonstrated that 8-bromo-cGMP mimicked the effects of SNAP and that the effects of SNAP could be completely abrogated using a cGMP antagonist, 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or protein kinase G antagonist (Rp-8-Br-cGMPS). SNAP and 8-Br-cGMP were both sufficient to lead to the site-specific phosphorylation (serine 32) and degradation of IkappaBalpha in isolated cardiac myocytes. Finally, protein kinase G was sufficient to directly phosphorylate IkappaBalpha on serine 32, a critical step in the activation of NF-kappaB.. These studies show that NO provokes TNF-alpha biosynthesis through a cGMP-dependent pathway, which suggests that the coincident expression of TNF-alpha and NO may foster self-sustaining positive autocrine/paracrine feedback inflammatory circuits within the failing heart. Topics: Animals; Benzoates; Cats; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; DNA-Binding Proteins; Electrophoresis; I-kappa B Proteins; Imidazoles; In Vitro Techniques; Myocardium; NF-kappa B; NF-KappaB Inhibitor alpha; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Oxadiazoles; Penicillamine; Phosphorylation; Protein Kinases; Quinoxalines; RNA, Messenger; Thionucleotides; Tumor Necrosis Factor-alpha | 2000 |
cGMP-kinase mediates cGMP- and cAMP-induced Ca2+ desensitization of skinned rat artery.
(Rp)-8-Bromo-guanosine 3',5'-cyclic monophosphorothioate (Rp-8-Br-cGMPS) inhibited competitively both isozymes of type I alpha and I beta cGMP-dependent protein kinase (cGMP-kinase) purified from porcine aorta with apparent Ki values (microM) of 3.7 for I alpha and 1.8 for I beta. The compound also inhibited bovine heart type II cAMP-dependent protein kinase (cAMP-kinase), but with a Ki of 25 microM. Thus, it is a selective inhibitor of cGMP-kinase. In alpha-toxin-skinned smooth muscle preparations from rat mesenteric artery, 8-Br-cGMP (10(-7) M) and 8-Br-cAMP (10(-6) M) produced a rightward shift of the concentration-contraction curves for Ca2+, denoting a decrease in Ca2+ sensitivity of the contractile elements. The shift by 8-Br-cAMP as well as by 8-Br-cGMP was completely reversed by Rp-8-Br-cGMPS, while a selective inhibitor of activation of cAMP-kinase, (Rp)-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPS), was without effects on the shift produced by these two compounds. These findings indicate the pivotal role that the activation of cGMP-kinase plays in the production of a decrease in Ca2+ sensitivity of contractile elements. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Analysis of Variance; Animals; Aorta; Calcium; Cattle; Cyclic AMP; Cyclic AMP-Dependent Protein Kinase Type II; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Enzyme Activation; Heart; Isoenzymes; Male; Mesenteric Arteries; Muscle Contraction; Muscle, Smooth, Vascular; Myocardium; Rats; Rats, Wistar; Swine; Thionucleotides; Type C Phospholipases | 1997 |
Activity-dependent long-term enhancement of transmitter release by presynaptic 3',5'-cyclic GMP in cultured hippocampal neurons.
Long-term potentiation (LTP) in hippocampus is a type of synaptic plasticity that is thought to be involved in learning and memory. Several lines of evidence suggest that LTP involves 3',5'-cyclic GMP (cGMP), perhaps as an activity-dependent presynaptic effector of one or more retrograde messengers (refs 2-12, but see ref. 13). However, previous results are also consistent with postsynaptic effects of cGMP. This is difficult to test in hippocampal slices, but more rigorous tests are possible in dissociated cell culture. We have therefore developed a reliable method for producing N-methyl-D-aspartate (NMDA) receptor-dependent LTP at synapses between individual hippocampal pyramidal neurons in culture. We report that inhibitors of guanylyl cyclase or of cGMP-dependent protein kinase block potentiation by either tetanic stimulation or low-frequency stimulation paired with postsynaptic depolarization. Conversely, application of 8-Br-cGMP to the bath or injection of cGMP into the presynaptic neuron produces activity-dependent long-lasting potentiation. The potentiation by cGMP involves an increase in transmitter release that is in part independent of changes in the presynaptic action potential. These results support a presynaptic role for cGMP in LTP. Topics: Action Potentials; Aminoquinolines; Animals; Cells, Cultured; Cyclic GMP; Guanylate Cyclase; Long-Term Potentiation; Magnesium; Neurons; Neurotransmitter Agents; Presynaptic Terminals; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Thionucleotides | 1995 |
Rp-8-Br-guanosine-3',5'-cyclic monophosphorothioate inhibits relaxation elicited by nitroglycerin in rabbit aorta.
To ascertain whether the activation of cyclic GMP-dependent protein kinase is involved in the relaxant effects of nitroglycerin, the effects of Rp-8-Br-guanosine-3',5'-cyclic monophosphorothioate (Rp-8-Br-cGMPS), an inhibitor of activation of G-kinase by cyclic GMP, were studied. In the isolated rabbit aorta contracted by phenylephrine, Rp-8-Br-cGMPS (30 microM) competitively inhibited the relaxation elicited by 8-Br-cGMP, but not that elicited by 8-Br-cyclic AMP, indicating that Rp-8-Br-cGMPS is a specific inhibitor of activation of cyclic GMP-dependent protein kinase by cyclic GMP. The relaxation elicited by nitroglycerin was inhibited by Rp-8-Br-cGMPS. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Aorta; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Nitroglycerin; Rabbits; Rats; Thionucleotides | 1994 |