8-bromocyclic-gmp has been researched along with 3-(5--hydroxymethyl-2--furyl)-1-benzylindazole* in 11 studies
11 other study(ies) available for 8-bromocyclic-gmp and 3-(5--hydroxymethyl-2--furyl)-1-benzylindazole
Article | Year |
---|---|
Activity of guanylyl cyclase activators on the reaction of tracheal smooth muscle contraction.
The subject of the study compare the influences of YC-1 guanylyl cyclase activator with ODQ guanylyl cyclase inhibitor on the tracheal smooth muscle contraction induced by carbachol. The study specified the influence of increasing concentrations of soluble guanylyl cyclase activators YC-1 and 8Br cGMP on the reaction of tracheal smooth muscle contraction released by carbachol. The author also examined the effect of increasing concentrations of soluble guanylyl cyclase inhibitor ODQ on the concentration-effect curves for carbachol.. Testing was conducted on an isolated trachea of both sexes of Wistar rats with weight ranging between 350 g and 450 g. Tracheas were prepared in accordance with the Akcasu (1959) method in Szadujkis-Szadurski (1996) modification. Concentration-effect curves were determined with the use of cumulated concentration method, in accordance with the van Rossum method (1963) in Kenakin (2006) modification.. According to conducted testing, activation of soluble guanylyl cyclase with the use of YC-1 and 8Br cGMP caused reduced reaction of the tracheal smooth muscle with carbachol on average to 80%. Comparing concentration-effect curves for carbachol before and after the use of 8Br cGMP, similar results were obtained for those released by YC-1. On the other hand, increasing concentrations of guanylyl cyclase inhibitor - ODQ cause shift of curves to the left, decrease of EC(50) value and an increase of maximum reaction to carbachol.. Carbachol, depending on concentration, causes tracheal smooth muscle contraction. According to testing, we can confirm that activation of guanylyl cyclase leads to reduction of the reaction of tracheal smooth muscle to carbachol on average up to 80% Topics: Animals; Carbachol; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Activators; Enzyme Inhibitors; Female; Guanylate Cyclase; Indazoles; Male; Muscle, Smooth; Oxadiazoles; Quinoxalines; Rats; Rats, Wistar; Trachea | 2011 |
Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel.
There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved.. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay.. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume.. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux. Topics: Adult; Aged; Aged, 80 and over; Benzoates; Cell Size; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Enzyme Activators; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Guanylate Cyclase; Humans; Indazoles; Large-Conductance Calcium-Activated Potassium Channels; Microscopy, Confocal; Nitric Oxide; Oxadiazoles; Quinoxalines; Trabecular Meshwork | 2009 |
Contractile performance of adult ventricular rat cardiomyocytes is not directly jeopardized by NO/cGMP-dependent induction of pro-apoptotic pathways.
The activation of NO/cGMP pathways can induce pro-apoptotic pathways in cardiomyocytes although only a small number of cardiomyocytes fulfill the criteria of apoptosis. The same pathways reduce the contractile performance of cardiomyocytes. In the present study, we tested the hypothesis that exposure of cells to NO/cGMP for 24 h decrease their contractile performance due to an activation of pro-apoptotic pathways. Experiments were performed on freshly isolated and cultured adult ventricular rat cardiomyocytes. Cells were incubated with 8-bromo-cyclo-GMP (100 nmol/L-1 micromol/L), the NO donor SNAP (1 nmol/L-100 micromol/L), or the guanylyl cyclase activator YC-1 (3 micromol/L). Cell shortening, contraction and relaxation velocities, and diastolic cell lengths were determined at beating frequencies of 0.5, 1, and 2 Hz 24 h later. The activation of pro-apoptotic pathways was determined by staining of cardiomyocytes with an antibody directed against active caspase-3 and quantification of the number of apoptotic cells (annexin staining). Caspase-3 activation and an increase in the number of apoptotic cells was observed, but only at the highest concentrations tested (8-bromo-cyclo-GMP: 1-10 mmol/L; SNAP: 1-100 micromol/L). At these concentrations, none of the drugs decreased the mean cell shortening of cardiomyocytes. However, at concentrations lower than those required for induction of apoptotic cell death, the diastolic cell lengths and sarcomere lengths increased but cell shortening decreased. In conclusion, low concentrations of either NO or cGMP cause a desensitization of myofibrils, as indicated by elongated cell shapes, increased sarcomere lengths and reduced load-free cell shortening. High concentrations of NO/cGMP induce caspase-3 activation and increase the number of cells fulfilling the criteria of apoptotic cell death but did not impair cell function. Therefore, induction of apoptotic cell death per se seems not to contribute to the loss of contractile efficiency on the cellular level. Topics: Animals; Apoptosis; Caspase 3; Cell Movement; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Activators; Indazoles; Male; Myocytes, Cardiac; Nitric Oxide; Nitric Oxide Donors; Rats; Rats, Wistar; S-Nitroso-N-Acetylpenicillamine; Signal Transduction | 2007 |
Soluble guanylyl cyclase during postnatal porcine pulmonary maturation.
The nitric oxide (NO)/cGMP pathway plays a key role in the regulation of pulmonary vascular tone during the transition from the fetal to the neonatal circulation, and it is impaired in pathophysiological conditions such as pulmonary hypertension. In the present study, we have analyzed the changes in the function and expression of soluble guanylyl cyclase (sGC) in pulmonary arteries during early postnatal maturation in isolated third-branch pulmonary arteries from newborn (3-18 h of age) and 2-wk-old piglets. The expression of sGC beta(1)-subunit in pulmonary arteries increased with postnatal age both at the level of mRNA and protein. The catalytic region of porcine sGC beta(1) was sequenced, showing a 92% homology with the human sequence. This age-dependent increase in sGC expression correlated with increased vasorelaxant responses to the physiological sGC activator NO and to the exogenous sGC activator YC-1, but not to the membrane-permeable cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate. In conclusion, an increased expression of sGC in pulmonary conduit arteries from 2-wk-old compared with newborn piglets explains, at least partly, the age-dependent increase in the vasorelaxant response of NO and other activators of sGC. Topics: Aging; Animals; Animals, Newborn; Base Sequence; Cyclic GMP; Enzyme Activators; Guanylate Cyclase; Indazoles; Molecular Sequence Data; Nitric Oxide; Pulmonary Artery; RNA, Messenger; Sequence Homology, Nucleic Acid; Solubility; Swine; Vasodilation | 2005 |
Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta.
Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol. Membrane cholesterol depletion impairs acetylcholine (ACh)-induced relaxation due to alteration in caveolar structure. Given the nature of NO to be more soluble in a hydrophobic environment than in water, and assuming that colocalization of components in a signal transduction cascade seems to be a critical determinant of signaling efficiency by eNOS activation, we hypothesize that sGC, PKA, and PKG activation may occur at the plasma membrane caveolae. In endothelium-intact rat aortic rings, the relaxation induced by ACh, by the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), and by 8-bromo-cGMP was impaired in the presence of methyl-beta-cyclodextrin, a drug that disassembles caveolae by sequestering cholesterol from the membrane. sGC, PKG, and PKA were colocalized with caveolin-1 in aortic endothelium, and this colocalization was abolished by methyl-beta-cyclodextrin. Methyl-beta-cyclodextrin efficiently disassembled caveolae in endothelium. In summary, our results provide evidence of compartmentalization of sGC, PKG, and PKA in endothelial caveolae contributing to NO signaling cascade, giving new insights by which the endothelium mediates vascular smooth muscle relaxation. Topics: Acetylcholine; Animals; beta-Cyclodextrins; Caveolae; Caveolin 1; Caveolins; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Endothelium, Vascular; Enzyme Activation; Guanylate Cyclase; Immunohistochemistry; In Vitro Techniques; Indazoles; Isometric Contraction; Male; Microscopy, Electron; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Rats; Rats, Sprague-Dawley; Signal Transduction; Vasodilator Agents | 2005 |
Contribution of cGMP but not peroxynitrite to negative feedback regulation of penile erection elicited by nitric oxide in the hippocampal formation of the rat.
We established previously that nitric oxide (NO) in the hippocampal formation (HF) participates actively in negative feedback regulation of penile erection. This study further evaluated whether this process engaged soluble guanylyl cyclase (sGC)/cGMP cascade or peroxynitrite in the HF. Intracavernous pressure (ICP) recorded from the penis in adult, male Sprague-Dawley rats anesthetized with chloral hydrate was employed as our experimental index for penile erection. Microinjection bilaterally of a NO-independent sGC activator, YC-1 (0.1 or 1 nmol) or a cGMP analog, 8-Bromo-cGMP (0.1 or 1 nmol), into the HF elicited a significant reduction in baseline ICP. Bilateral application into the HF of equimolar doses (0.5 or 1 nmol) of a sGC inhibitor, LY83583 or a NO-sensitive sGC inhibitor, ODQ significantly antagonized the decrease in baseline ICP induced by co-administration of the NO precursor, L-arginine (5 nmol), along with significant enhancement of the magnitude of papaverine-induced elevation in ICP. In contrast, a peroxynitrite scavenger, L-cysteine (50 or 100 pmol), or an active peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis-(N-methyl-4'-pyridyl)-porphyrinato iron (III) (10 or 50 pmol), was ineffective in both events. These results suggest that NO may participate in negative feedback regulation of penile erection by activating the sGC/cGMP cascade in the HF selectively. Topics: Aminoquinolines; Animals; Cyclic GMP; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Activators; Enzyme Inhibitors; Feedback; Hippocampus; Indazoles; Male; Microinjections; Nitric Oxide; Penile Erection; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Venous Pressure | 2004 |
YC-1-induced cyclooxygenase-2 expression is mediated by cGMP-dependent activations of Ras, phosphoinositide-3-OH-kinase, Akt, and nuclear factor-kappaB in human pulmonary epithelial cells.
We demonstrated previously that 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), an activator of soluble guanylate cyclase (sGC), induces cyclooxygenase-2 (COX-2) expression via cGMP- and p44/42 mitogen-activated protein kinase-dependent pathways in human pulmonary epithelial A549 cells. In this study, we explore the role of Ras, phosphoinositide-3-OH-kinase (PI3K), Akt, and transcription factor nuclear factor-kappaB (NF-kappaB) in YC-1-induced COX-2 expression in A549 cells. A Ras inhibitor (manumycin A), a PI3K inhibitor (wortmannin), an Akt inhibitor (1l-6-Hydroxymethyl-chiro-inositol2-[(R)-2-O-methyl-3-O-octadecylcarbonate]), and an NF-kappaB inhibitor [pyrrolidine dithiocarbamate (PDTC)] all reduced YC-1-induced COX-2 expression. The YC-1-induced increase in COX activity was also blocked by manumycin A, wortmannin, PDTC, and the dominant-negative mutants for Ras (RasN17), Akt (Akt DN), and IkappaBalpha (IkappaBalphaM). The YC-1-induced increase in Ras activity was inhibited by an sGC inhibitor [1H-(1,2,4)oxadiazolo[4,3-a]quinozalin-1-one (ODQ)], a protein kinase G (PKG) inhibitor [1-oxo-9.12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-I][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT-5823)], and manumycin A. YC-1-induced Akt activation was also inhibited by ODQ, KT-5823, manumycin A, and wortmannin. YC-1 caused the formation of an NF-kappaB-specific DNA-protein complex and an increase in kappaB-luciferase activity. YC-1-induced kappaB-luciferase activity was inhibited by ODQ, KT-5823, manumycin A, wortmannin, an Akt inhibitor, PDTC, RasN17, Akt DN, and IkappaBalphaM. Likewise, YC-1-induced IKKalpha/beta activation was inhibited by ODQ, KT-5823, manumycin A, wortmannin, and an Akt inhibitor. Furthermore, YC-1-induced COX-2 promoter activity was inhibited by manumycin A, RasN17, Akt DN, PDTC, and IkappaBalphaM. Taken together, these results indicate that YC-1 might activate the sGC/cGMP/PKG pathway to induce Ras and PI3K/Akt activation, which in turn initiates IKKalpha/beta and NF-kappaB activation and finally induces COX-2 expression in A549 cells. Topics: Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclooxygenase 2; Dinoprostone; Enzyme Inhibitors; Epithelial Cells; Gene Expression; Humans; I-kappa B Kinase; I-kappa B Proteins; Indazoles; Interleukin-1; Isoenzymes; Lung; Membrane Proteins; Mutation; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphatidylinositol 3-Kinases; Polyenes; Polyunsaturated Alkamides; Proline; Prostaglandin-Endoperoxide Synthases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; ras Proteins; Thiocarbamates; Transcription Factors | 2004 |
Inhibition by ebselen on nitric oxide mediated relaxations in the rat anococcygeus muscle.
The effect of 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) on nitric oxide (NO) mediated responses and NO generation from NO donors were studied in vitro. In precontracted rat isolated anococcygeus muscles, relaxations induced by NO donors, electrical field stimulation and 5-[1-(phenylmethyl)-1H-indazole-3-yl]-2-furanmethanol (YC-1) were significantly inhibited by ebselen (100 microM), whereas responses elicited by papaverine and theophylline were not affected; those by 8-bromo-cyclic-guanosine-monophosphate (8-Br-cGMP) were slightly enhanced. NO generation from NO gas aqueous solution or acidified nitrite was not affected, but that from S-nitroso-N-acetyl-penicillamine (SNAP) was attenuated by ebselen, and the attenuation was reserved by glutathione. Both glutathione and cupric sulphate altered the ultraviolet spectrum of ebselen. These findings suggest that ebselen at high concentrations nonselectively inhibited NO-mediated responses, possibly through inhibiting soluble guanylate cyclase. Ebselen does not appear to directly interact with NO, but it may inhibit NO release from nitrosothiols by a thiol- and/or copper-dependent mechanism. Topics: Animals; Aorta; Azoles; Copper; Cyclic GMP; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Electric Stimulation; Endothelium, Vascular; Enzyme Activators; Enzyme Inhibitors; Glutathione; In Vitro Techniques; Indazoles; Isoindoles; Male; Muscle Relaxation; Muscle, Smooth; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Organoselenium Compounds; Papaverine; Penicillamine; Phosphodiesterase Inhibitors; Rats; Rats, Sprague-Dawley; Spectrophotometry, Ultraviolet; Vasodilation | 2003 |
Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells.
The effects of vinpocetine, an inhibitor of cyclic GMP phosphodiesterase, on ionic currents were examined in rat pituitary GH3 lactotrophs with the aid of the patch-clamp technique. In GH3 cells bathed in normal Tyrode's solution, vinpocetine (10 microM) reversibly increased the amplitude of Ca2+-activated K+ current (I(K)Ca) with an EC50 value of 4 microM. When the recording pipettes were filled with 10 mM EGTA, vinpocetine also stimulated I(K)Ca. In the cell-attached configuration, application of vinpocetine to the bath increased the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels. In excised membrane patches, application of vinpocetine (10 microM) to the bath did not change the single-channel conductance of BK(Ca) channels; however, it did increase channel activity. In the inside-out configuration, neither 8-bromo cyclic GMP nor YC-1 applied intracellularly affected BK(Ca) channel activity. The vinpocetine-induced change in the kinetic behavior of BK(Ca) channels was due to an increase in mean open time and a decrease in mean closed time. Vinpocetine (10 microM) caused a leftward shift in the midpoint for the voltage-dependent opening. Under the current-clamp mode, vinpocetine (10 microM) decreased the firing rate of spontaneous action potentials induced by thyrotropin-releasing hormone (10 microM) in GH3 cells. In pheochromocytoma PC12 cells, vinpocetine (10 microM) applied intracellularly also enhanced the activity of BK(Ca) channels without altering single-channel conductance. Thus, the present study suggests that vinpocetine-mediated stimulation of I(K)Ca may result from the direct activation of BK(Ca) channels and indirectly from elevated cytosolic Ca2+. Topics: Animals; Calcium Channel Blockers; Calcium Channels; Cyclic GMP; Drug Interactions; Electrophysiology; Enzyme Activators; Indazoles; Kinetics; Large-Conductance Calcium-Activated Potassium Channels; Membrane Potentials; PC12 Cells; Pheochromocytoma; Pituitary Gland; Potassium Channels; Potassium Channels, Calcium-Activated; Rats; Tumor Cells, Cultured; Vinca Alkaloids | 2001 |
Novel strategies for opposing murine microglial activation.
Pathologic microglial activation is believed to contribute to progressive neuronal damage in neurodegenerative diseases by the release of potentially neurotoxic agents, such as pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha). Using cultured N9 microglial cells, we have examined the regulation of TNF-alpha following endotoxic insult with lipopolysacharide (LPS), focusing on the role of the pro-inflammatory phospholipase A2/mitogen activated protein kinase/arachidonic acid/cyclo-oxygenase-2 cascade and the nitric oxide/cGMP pathway. Data show that various inhibitors of the PLA2 cascade markedly inhibit LPS-induced TNF-alpha release, supporting a key role of this pathway in the regulation of microglial activation. We also investigated the putative effects of cGMP-elevating agents on blocking microglial activation induced by LPS. Data show that each member of this class of cGMP-elevating compounds that we employed opposed microglial TNF-alpha release, suggesting that strengthening intracellular cGMP signaling mitigates against microglial activation. Taken together, our results suggest novel strategies for reducing microglial activation. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Cells, Cultured; Cyclic GMP; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dipyridamole; Enzyme Inhibitors; Flavonoids; Guanylate Cyclase; Imidazoles; Indazoles; Isoenzymes; Lipopolysaccharides; MAP Kinase Kinase 1; MAP Kinase Kinase 2; MAP Kinase Signaling System; Mice; Microglia; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; p38 Mitogen-Activated Protein Kinases; Phospholipases A; Phospholipases A2; Phosphorylcholine; Prostaglandin-Endoperoxide Synthases; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Pyridines; Signal Transduction; Tumor Necrosis Factor-alpha | 2000 |
Inhibition of platelet adhesion to collagen by cGMP-elevating agents.
In the present study, we examined the effects and action mechanisms of cGMP-elevating agents on platelet adhesion to collagen fiber. YC-1, a nitric oxide (NO)-independent activator of soluble guanylate cyclase, inhibited both initial and long-term platelet adhesion to collagen, and the inhibitory effect was potentiated by dipyridamole, a selective inhibitor of cGMP-specific phosphodiesterase. Sodium nitroprusside (SNP), a NO-donor, and 8-bromo-cGMP also inhibited the initial platelet adhesion, but inhibited long-term adhesion only in the presence of dipyridamole. Collagen-induced intracellular Ca2+ mobilization and actin polymerization were prevented by YC-1, SNP and 8-bromo-cGMP. Since blockade of Ca2+ mobilization and actin polymerization caused by collagen led to decrease of platelet adhesion, we suggest that the inhibitory activity of cGMP-elevating agents on the adhesion of platelets to collagen is resulting from interference of these signaling pathways. Topics: Actins; Adult; Blood Platelets; Calcium; Collagen; Cyclic GMP; Humans; Indazoles; Nitroprusside; Platelet Aggregation; Platelet Aggregation Inhibitors | 1997 |