8-bromocyclic-gmp and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine

8-bromocyclic-gmp has been researched along with 1-1-diethyl-2-hydroxy-2-nitrosohydrazine* in 13 studies

Other Studies

13 other study(ies) available for 8-bromocyclic-gmp and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine

ArticleYear
Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species.
    American journal of physiology. Renal physiology, 2016, 11-01, Volume: 311, Issue:5

    There is increasing evidence that the permeability of the glomerular filtration barrier (GFB) is partly regulated by a balance between the bioavailability of nitric oxide (NO) and that of reactive oxygen species (ROS). It has been postulated that normal or moderately elevated NO levels protect the GFB from permeability increases, whereas ROS, through reducing the bioavailability of NO, have the opposite effect. We tested the tentative antagonism between NO and ROS on glomerular permeability in anaesthetized Wistar rats, in which the left ureter was cannulated for urine collection while simultaneously blood access was achieved. Rats were systemically infused with either l-NAME or l-NAME together with the superoxide scavenger Tempol, or together with l-arginine or the NO-donor DEA-NONOate, or the cGMP agonist 8-bromo-cGMP. To measure glomerular sieving coefficients (theta, θ) to Ficoll, rats were infused with FITC-Ficoll 70/400 (mol/radius 10-80 Å). Plasma and urine samples were analyzed by high-performance size-exclusion chromatography (HPSEC) for determination of θ for Ficoll repeatedly during up to 2 h. l-NAME increased θ for Ficoll

    Topics: Animals; Cyclic GMP; Enzyme Inhibitors; Glomerular Filtration Rate; Hydrazines; Kidney Glomerulus; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Permeability; Rats; Rats, Wistar; Reactive Oxygen Species

2016
Factors Associated with Nitric Oxide-mediated β2 Integrin Inhibition of Neutrophils.
    The Journal of biological chemistry, 2015, Jul-10, Volume: 290, Issue:28

    This investigation explored the mechanism for inhibition of β2 integrin adhesion molecules when neutrophils are exposed to nitric oxide ((•)NO). Roles for specific proteins were elucidated using chemical inhibitors, depletion with small inhibitory RNA, and cells from knock-out mice. Optimal inhibition occurs with exposures to a (•)NO flux of ∼ 28 nmol/min for 2 min or more, which sets up an autocatalytic cascade triggered by activating type 2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). Integrin inhibition does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds), a NOS-2 inhibitor (1400 W), or with cells from mice lacking NOS-2 or the gp91(phox) component of NOX. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and actin filament formation assays indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, and protein-disulfide isomerase in proximity to actin filaments. These effects were inhibited in cells exposed to ultraviolet light which photo-reverses S-nitrosylated cysteine residues and by co-incubations with cytochalasin D. The autocatalytic cycle can be arrested by protein kinase G activated with 8-bromo-cyclic GMP and by a high (•)NO flux (∼ 112 nmol/min) that inactivates NOX.

    Topics: Actins; Animals; CD18 Antigens; Cell Adhesion; Cyclic GMP; Guanylate Cyclase; Humans; Hydrazines; Membrane Glycoproteins; Mice; Mice, Knockout; NADPH Oxidase 2; NADPH Oxidases; Neutrophils; Nitric Oxide; Nitric Oxide Synthase Type II; RNA, Small Interfering

2015
Nitric oxide-mediated modulation of the murine locomotor network.
    Journal of neurophysiology, 2014, Volume: 111, Issue:3

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1-12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior.

    Topics: Action Potentials; Animals; Cyclic GMP; Cyclic N-Oxides; Enzyme Inhibitors; Free Radical Scavengers; Hydrazines; Imidazoles; Locomotion; Mice; Mice, Inbred C57BL; Motor Neurons; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type I; Spinal Cord

2014
Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation.
    American journal of physiology. Gastrointestinal and liver physiology, 2006, Volume: 290, Issue:3

    NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.

    Topics: Adenoviridae; Animals; Calcium Signaling; Cell Line; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Humans; Hydrazines; Hypertension, Portal; Liver; Male; Nitric Oxide; Nitrogen Oxides; Oxadiazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Transduction, Genetic

2006
Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential.
    Journal of neurochemistry, 2006, Volume: 97, Issue:3

    Nitric oxide (NO) has a number of physiological and pathophysiological effects in the nervous system. One target of NO is the mitochondrion, where it inhibits respiration and ATP synthesis, which may contribute to NO-mediated neuronal injury. Our recent studies suggested that impaired mitochondrial function impairs mitochondrial trafficking, which could also contribute to neuronal injury. Here, we studied the effects of NO on mitochondrial movement and morphology in primary cultures of forebrain neurons using a mitochondrially targeted enhanced yellow fluorescent protein. NO produced by two NO donors, papa non-oate and diethylamine/NO complex, caused a rapid cessation of mitochondrial movement but did not alter morphology. Movement recovered after removal of NO. The effects of NO on movement were associated with dissipation of the mitochondrial membrane potential. Increasing cGMP levels using 8-bromoguanosine 3',5'-cyclic monophosphate, did not mimic the effects on mitochondrial movement. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-induced activation of soluble guanylate cyclase, did not block the effects of NO. Thus, neither increasing nor decreasing cGMP levels had an effect on mitochondrial movement. Based on these data, we conclude that NO is a novel modulator of mitochondrial trafficking in neurons, which may act through the inhibition of mitochondrial function.

    Topics: Animals; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; Drug Interactions; Embryo, Mammalian; Enzyme Inhibitors; Glutamic Acid; Hydrazines; Membrane Potentials; Mitochondria; Movement; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Oxadiazoles; Prosencephalon; Quinoxalines; Rats; Time Factors

2006
Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005, Jul-20, Volume: 25, Issue:29

    Amyloid-beta (Abeta), a peptide thought to play a crucial role in Alzheimer's disease (AD), has many targets that, in turn, activate different second-messenger cascades. Interestingly, Abeta has been found to markedly impair hippocampal long-term potentiation (LTP). To identify a new pathway that might be responsible for such impairment, we analyzed the role of the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinase (cGK)/cAMP-responsive element-binding protein (CREB) cascade because of its involvement in LTP. The use of the NO donor 2-(N,N-dethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO), the sGC stimulator 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine, or the cGMP-analogs 8-bromo-cGMP and 8-(4-chlorophenylthio)-cGMP reversed the Abeta-induced impairment of CA1-LTP through cGK activation. Furthermore, these compounds reestablished the enhancement of CREB phosphorylation occurring during LTP in slices exposed to Abeta. We also found that Abeta blocks the increase in cGMP immunoreactivity occurring immediately after LTP and that DEA/NO counteracts the effect of Abeta. These results strongly suggest that, when modulating hippocampal synaptic plasticity, Abeta downregulates the NO/cGMP/cGK/CREB pathway; thus, enhancement of the NO/cGMP signaling may provide a novel approach to the treatment of AD and other neurodegenerative diseases with elevated production of Abeta.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cyclic AMP Response Element-Binding Protein; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Fluorescent Antibody Technique; Guanylate Cyclase; Hippocampus; Hydrazines; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; Neuronal Plasticity; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Organ Culture Techniques; Peptide Fragments; Phosphorylation; Up-Regulation

2005
Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms.
    Circulation research, 2002, May-31, Volume: 90, Issue:10

    The cGMP-dependent protein kinase type I (cGKI) is a major mediator of NO/cGMP-induced vasorelaxation. Smooth muscle expresses two isoforms of cGKI, cGKIalpha and cGKIbeta, but the specific role of each isoform in vascular smooth muscle cells (VSMCs) is poorly understood. We have used a genetic deletion/rescue strategy to analyze the functional significance of cGKI isoforms in the regulation of the cytosolic Ca(2+) concentration by NO/cGMP in VSMCs. Cultured mouse aortic VSMCs endogenously expressed both cGKIalpha and cGKIbeta. The NO donor diethylamine NONOate (DEA-NO) and the membrane-permeable cGMP analogue 8-bromo-cGMP inhibited noradrenaline-induced Ca(2+) transients in wild-type VSMCs but not in VSMCs genetically deficient for both cGKIalpha and cGKIbeta. The defective Ca(2+) regulation in cGKI-knockout cells could be rescued by transfection of a fusion construct consisting of cGKIalpha and enhanced green fluorescent protein (EGFP) but not by a cGKIbeta-EGFP construct. Fluorescence imaging indicated that the cGKIalpha-EGFP fusion protein was concentrated in the perinuclear/endoplasmic reticulum region of live VSMCs, whereas the cGKIbeta-EGFP protein was more homogeneously distributed in the cytoplasm. These results suggest that one component of NO/cGMP-induced smooth muscle relaxation is the activation of the cGKIalpha isoform, which decreases the noradrenaline-stimulated cytosolic Ca(2+) level.

    Topics: Animals; Calcium; Cell Nucleus; Cells, Cultured; COS Cells; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Endoplasmic Reticulum; Hydrazines; Mice; Mice, Knockout; Muscle, Smooth, Vascular; Nitric Oxide Donors; Nitrogen Oxides; Norepinephrine; Protein Isoforms; Recombinant Fusion Proteins; Signal Transduction; Transfection

2002
Effects of nitric oxide release in an area of the chick forebrain which is essential for early learning.
    Brain research. Developmental brain research, 2000, May-11, Volume: 121, Issue:1

    Extracellular recording techniques were used to study the effects of the nitric oxide releasing agents diethylamine-NO (DEA-NO) and S-nitroso-N-acetyl-penicillamine (SNAP) on synaptic transmission in the intermediate and medial part of the hyperstriatum ventrale (IMHV), a part of the domestic chick forebrain that is essential for some forms of early learning. The field response evoked by local electrical stimulation was recorded in the IMHV in an in vitro slice preparation. DEA-NO (100-200 mgr) significantly depressed the field response in a concentration dependent and reversible manner. However, the depression produced by perfusion with 400 mgr DEA-NO, was not reversed following washout of the drug. With 400 mgr DEA-NO, NO reaches a maximum concentration of 10 mgr at 2 min of perfusion, and then declines slowly. SNAP (400 mgr) produced an effect similar to 400 mgr DEA-NO. Neither the immediate nor the longer-term depressive effect of NO is mediated by activation of guanylyl cyclase because in the presence of both low and high doses of ODQ, a potent and selective inhibitor of NO-stimulated guanylyl cyclase, NO produced the same depression of the field response. There is evidence however that the IMHV possesses c-GMP responsive elements since direct perfusion of 8-Br-cGMP (1 mM) produced a long-term but not an immediate depression. The long-term depression produced by 400 mgr DEA-NO was eliminated in the presence of either a selective adenosine A(1) receptor antagonist or an ADP-ribosyltransferase inhibitor. It was also possible to prevent the long-term effect in the presence of tetraethyl ammonium a K(+)-channel blocker. These results suggest that the NO may be acting presynaptically in a synergistic fashion with the adenosine A(1) receptor to depress transmitter release.

    Topics: Animals; Chickens; Conditioning, Psychological; Cyclic GMP; Evoked Potentials; Guanylate Cyclase; Hydrazines; Memory; Neuronal Plasticity; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Penicillamine; Poly(ADP-ribose) Polymerases; Potassium Channels; Prosencephalon; Receptors, Adrenergic, alpha-1; Synapses; Synaptic Transmission; Tetraethylammonium; Xanthines

2000
Analysis of the neuroprotective effects of various nitric oxide donor compounds in murine mixed cortical cell culture.
    Journal of neurochemistry, 1999, Volume: 72, Issue:5

    Nitric oxide (NO) has been implicated in both the pathogenesis of and protection from NMDA receptor-mediated neuronal injury. This apparent paradox has been attributed to alternate redox states of nitrogen monoxide, whereby, depending on the redox milieu, nitrogen monoxide can be neuroprotective via nitrosation chemistry or react with superoxide to form secondary toxic species. In our murine mixed cortical cell culture system, the NONOate-type NO donors diethylamine/NO complex sodium (Dea/NO), (Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium++ +-1,2-diolate (Papa/NO), and spermine/NO complex sodium (Sper/NO), as well as the S-nitrosothiols S-nitroso-L-glutathione (GSNO) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP) (NO+ equivalents), decreased NMDA-induced neuronal injury in a concentration-dependent manner. 8-Bromo-cyclic GMP did not mimic the inhibitory effects of the donors, suggesting that the neuroprotection was not the result of NO-stimulated neuronal cyclic GMP production. Furthermore, neuronal injury induced by exposure of cultures to H2O2 was not altered by the presence of Dea/NO, indicating the absence of a direct antioxidant effect. NONOates did, however, reduce NMDA-stimulated uptake of 45Ca2+, whereas high potassium-induced 45Ca2+ accumulation, a measurement of entry via voltage-gated calcium channels, was unaffected. The parallel reduction of 45Ca2+ accumulation and NMDA neurotoxicity by NONOates mimicked that seen with an NMDA receptor antagonist. Electrochemical measurements of NO via an NO-sensitive electrode demonstrated that neuroprotective concentrations of all donors produced appreciable amounts of NO over the 5-min time frame. Determination of the formation of NO+ equivalents, as assessed by N-nitrosation of 2,3-diaminonaphthylene, revealed little or no observable N-nitrosation by Sper/NO, GSNO, and SNAP with significant N-nitrosation observed by Papa/NO and Dea/NO. However, addition of ascorbate (400 microM) effectively prevented the nitrosation of 2,3-diaminonaphthylene produced by Dea/NO and Papa/NO without altering their neuroprotective properties or their effects on 45Ca2+ accumulation. Present results indicate that the intrinsic NO/NO+ characteristics of NO donor compounds may not be a good predictor of their ability to inhibit NMDA receptor-mediated neurotoxicity at the cellular level.

    Topics: Animals; Antioxidants; Calcium; Cells, Cultured; Cerebral Cortex; Cyclic GMP; Excitatory Amino Acid Agonists; Hydrazines; Intracellular Membranes; Mice; N-Methylaspartate; Neurons; Neuroprotective Agents; Neurotoxins; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Rats; Rats, Inbred Strains

1999
The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation.
    Journal of molecular and cellular cardiology, 1999, Volume: 31, Issue:4

    The role of guanosine 3',5'-cyclic monophosphate (cGMP) in the regulation of cardiac contractility remains controversial. The present study has examined the effects of high concentrations of the nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine (SNAP) and 1,1-diethyl-2-hydroxy-2-nitroso-hydrazine (DEA/NO), on cGMP levels and isoproterenol-induced increases in contractility in rat cardiomyocytes before and after selective inhibition of soluble guanylyl cyclase with 1 H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In control myocytes, 100 microm SNAP or 100 microm DEA/NO increased cGMP levels by more than 15-fold at 2 and 6 min and produced marked attenuations of isoproterenol-mediated increases in maximal cell shortening over the same time period. The NO donors had no significant effect on basal cell shortening (in the absence of isoproterenol). Pretreatment of myocytes with 25 microm ODQ for 30 min resulted in a complete blockade of the SNAP- or DEA/NO-induced increases in cGMP with no reversal of negative inotropy. ODQ did not affect basal contractility, basal cGMP levels or isoproterenol-induced increases in cell shortening. Furthermore, myocytes exposed to the cGMP analog, 8-bromo-cGMP (100 microm), did not exhibit significant differences in basal contractility or isoproterenol-induced increases in cell shortening. These results suggest that attenuation of cardiac contractility by NO donors in rat cardiomyocytes occurs by a mechanism independent of increases in cGMP levels.

    Topics: Animals; Cardiotonic Agents; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Hydrazines; In Vitro Techniques; Isoproterenol; Male; Myocardial Contraction; Myocardium; Nitric Oxide Donors; Nitrogen Oxides; Oxadiazoles; Oxidation-Reduction; Penicillamine; Quinoxalines; Rats; Rats, Wistar

1999
Nerve conduction block by nitric oxide that is mediated by the axonal environment.
    Journal of neurophysiology, 1998, Volume: 79, Issue:2

    Conduction in rat peripheral nerve has been monitored following the stimulated release of nitric oxide (NO) from diethylamine-NONOate (DEA-NONOate). Branches of the sciatic nerve were dissected, but left otherwise intact, and propagating signals recorded externally. At levels consistent with inflammation, NO exposure resulted in a complete loss of the compound action potential. Conduction was fully restored on removal of the drug. Most notably, this loss of excitability was dependent on the axonal environment. Removal of the connective tissue sheaths surrounding the nerve bundle, a process that normally enhances drug action, prevented block of signal propagation by nitric oxide. The epineurium seemed not to be required, and the decreased susceptibility to NO appeared to be correlated with a gradual loss of a component of the endoneurium that surrounds individual fibers. Tested on the rat vagus nerve, NO eliminated action potentials in both myelinated and unmyelinated fibers. One chemical mechanism that is consistent with the reversibility of block and the observed lack of effect of 8-Br-cGMP on conduction is the formation of a nitrosothiol through reaction of NO with a sulfhydryl group. In contrast to DEA-NONOate, S-nitrosocysteine, which can both transfer nitrosonium cation (NO+) to another thiol and also release nitric oxide, was effective on both intact and desheathed preparations. It has previously been demonstrated that chemical modification of invertebrate axons by sulfhydryl-reactive compounds induces a slow inactivation of Na+ channels. Nitric oxide block of axonal conduction may contribute to clinical deficits in inflammatory diseases of the nervous system.

    Topics: Action Potentials; Animals; Axons; Cyclic GMP; Cysteine; Depression, Chemical; Female; Hydrazines; Myelin Sheath; Neural Conduction; Nitric Oxide; Nitrogen Oxides; Nitroso Compounds; Oxidation-Reduction; Rats; Rats, Inbred Lew; S-Nitrosothiols; Sciatic Nerve; Sodium Channels; Sulfhydryl Compounds; Tetrodotoxin; Vagus Nerve

1998
Actions of compounds manipulating the nitric oxide system in the cat primary visual cortex.
    The Journal of physiology, 1997, Oct-15, Volume: 504 ( Pt 2)

    1. We iontophoretically applied NG-nitro-L-arginine (L-NOArg), an inhibitor of nitric oxide synthase (NOS), to cells (n = 77) in area 17 of anaesthetized and paralysed cats while recording single-unit activity extracellularly. In twenty-nine out of seventy-seven cells (38%), compounds altering NO levels affected visual responses. 2. In twenty-five out of twenty-nine cells, L-NOArg non-selectively reduced visually elicited responses and spontaneous activity. These effects were reversed by co-application of L-arginine (L-Arg), which was without effect when applied alone. Application of the NO donor diethylamine-nitric oxide (DEA-NO) produced excitation in three out of eleven cells, all three cells showing suppression by L-NOArg. In ten cells the effect of the soluble analogue of cGMP, 8-bromo-cGMP, was tested. In three of those in which L-NOArg application reduced firing, 8-bromo-cGMP had an excitatory effect. In six out of fifteen cells tested, L-NOArg non-selectively reduced responses to NMDA and alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA). Again, co-application of L-Arg reversed this effect, without enhancing activity beyond control values. 3. In a further subpopulation of ten cells, L-NOArg decreased responses to ACh in five. 4. In four out of twenty-nine cells L-NOArg produced the opposite effect and increased visual responses. This was reversed by co-application of L-Arg. Some cells were also affected by 8-bromo-cGMP and DEA-NO in ways opposite to those described above. It is possible that the variety of effects seen here could also reflect trans-synaptic activation, or changes in local circuit activity. However, the most parsimonious explanation for our data is that NO differentially affects the activity of two populations of cortical cells, in the main causing a non-specific excitation.

    Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arginine; Cats; Cyclic GMP; Electrophysiology; Enzyme Inhibitors; Excitatory Amino Acids; Hydrazines; Iontophoresis; N-Methylaspartate; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitrogen Oxides; Visual Cortex

1997
Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures.
    Proceedings of the National Academy of Sciences of the United States of America, 1996, Dec-24, Volume: 93, Issue:26

    Nitric oxide (NO.) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO.). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO donors have little effect (displaying at most only a slight increase) on the amplitude of evoked EPSCs and frequency of spontaneous mEPSCs in our preparations. These findings may help explain heretofore paradoxical observations that the NO moiety can either increase, decrease, or have no net effect on synaptic activity in various preparations.

    Topics: Animals; Aplysia; Cells, Cultured; Cerebral Cortex; Cyclic GMP; Cysteine; Ethylmaleimide; Fetus; Hippocampus; Hydrazines; Kinetics; Neuroglia; Neurons; Nitric Oxide; Nitrogen Oxides; Nitroglycerin; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; S-Nitrosothiols; Synapses; Synaptic Transmission

1996