8-9-epoxyeicosatrienoic-acid and iberiotoxin

8-9-epoxyeicosatrienoic-acid has been researched along with iberiotoxin* in 3 studies

Other Studies

3 other study(ies) available for 8-9-epoxyeicosatrienoic-acid and iberiotoxin

ArticleYear
Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase.
    American journal of physiology. Heart and circulatory physiology, 2006, Volume: 291, Issue:4

    11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Carbon Monoxide; Dose-Response Relationship, Drug; Heme Oxygenase (Decyclizing); Male; Mesenteric Arteries; Mesoporphyrins; Organometallic Compounds; Oxadiazoles; Peptides; Potassium Channels, Calcium-Activated; Quinoxalines; Rats; Rats, Wistar; Vasodilation; Vasodilator Agents

2006
Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids.
    Arteriosclerosis, thrombosis, and vascular biology, 2004, Volume: 24, Issue:3

    Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced by endothelial cells. In many vessels, they are an endothelium-derived hyperpolarizing factor (EDHF). However, it is unknown whether they act as an EDHF on platelets and whether this has functional consequences.. Flow cytometric measurement of platelet membrane potential using the fluorescent dye DiBac4 showed a resting potential of -58+/-9 mV. Different EET regioisomers hyperpolarized platelets down to -69+/-2 mV, which was prevented by the non-specific potassium channel inhibitor charybdotoxin and by use of a blocker of calcium-activated potassium channels of large conductance (BK(Ca) channels), iberiotoxin. EETs inhibited platelet adhesion to endothelial cells under static and flow conditions. Exposure to EETs inhibited platelet P-selectin expression in response to ADP. Stable overexpression of cytochrome P450 2C9 in EA.hy926 cells (EA.hy2C9 cells) resulted in release of EETs and a factor that hyperpolarized platelets and inhibited their adhesion to endothelial cells. These effects were again inhibited by charybdotoxin and iberiotoxin.. EETs hyperpolarize platelets and inactivate them by inhibiting adhesion molecule expression and platelet adhesion to cultured endothelial cells in a membrane potential-dependent manner. They act as an EDHF on platelets and might be important mediators of the anti-adhesive properties of vascular endothelium.

    Topics: 8,11,14-Eicosatrienoic Acid; Apamin; Aryl Hydrocarbon Hydroxylases; Biological Factors; Blood Platelets; Cells, Cultured; Charybdotoxin; Cytochrome P-450 CYP2C9; Endothelial Cells; Endothelium, Vascular; Humans; Hydroxyeicosatetraenoic Acids; Ion Channels; Membrane Potentials; Peptides; Platelet Adhesiveness; Platelet Aggregation; Potassium Channels; Recombinant Fusion Proteins; Transfection; Umbilical Veins

2004
EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization.
    American journal of physiology. Lung cellular and molecular physiology, 2001, Volume: 280, Issue:5

    Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K(+) conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel blocker. Moreover, 3 microM 8,9- or 14,15-EET induced hyperpolarizations of -12 +/- 3.5 and -16 +/- 3 mV, with EC(50) values of 0.13 and 0.14 microM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BK(Ca) channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BK(Ca) channels at low free Ca(2+) concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Biological Factors; Bronchoconstriction; Cattle; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guinea Pigs; In Vitro Techniques; Large-Conductance Calcium-Activated Potassium Channels; Male; Membrane Potentials; Muscarinic Agonists; Muscle, Smooth; Nitric Oxide Synthase; Peptides; Potassium Channels; Potassium Channels, Calcium-Activated; Rabbits; Trachea

2001