8-11-14-eicosatrienoic-acid and icatibant

8-11-14-eicosatrienoic-acid has been researched along with icatibant* in 2 studies

Other Studies

2 other study(ies) available for 8-11-14-eicosatrienoic-acid and icatibant

ArticleYear
Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts.
    Cardiovascular drugs and therapy, 2011, Volume: 25, Issue:6

    Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT.. Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol.. In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P < 0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH.. These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT.

    Topics: 8,11,14-Eicosatrienoic Acid; Abdomen; Animals; Bradykinin; Bradykinin B2 Receptor Antagonists; Coronary Circulation; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Disease Models, Animal; Dogs; Female; Hemodynamics; Ischemic Postconditioning; Ischemic Preconditioning, Myocardial; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Receptor, Bradykinin B2

2011
Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2001, Volume: 280, Issue:3

    The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO.

    Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Arachidonic Acid; Benzimidazoles; Biphenyl Compounds; Bradykinin; Bradykinin Receptor Antagonists; Captopril; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Desoxycorticosterone; Enalapril; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Kidney; Kidney Cortex; Kidney Medulla; Male; Microsomes; Mixed Function Oxygenases; NADPH-Ferrihemoprotein Reductase; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Spironolactone; Tetrazoles

2001