7-pentacosene has been researched along with 9-pentacosene* in 2 studies
*9-pentacosene: structure in first source [MeSH]
*9-pentacosene: structure in first source [MeSH]
2 other study(ies) available for 7-pentacosene and 9-pentacosene
Article | Year |
---|---|
Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees.
When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion. Topics: Alkanes; Alkenes; Animals; Bees; Eupatorium; Hydrocarbons; Nosema; Oils, Volatile | 2020 |
Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis.
Anoplophora glabripennis (Motsch.) is a polyphagous member of the Cerambycidae, and is considered, worldwide, to be one of the most serious quarantine pests of deciduous trees. We isolated four chemicals from the trail of A. glabripennis virgin and mated females that were not present in trails of mature males. These compounds were identified as 2-methyldocosane and (Z)-9-tricosene (major components), as well as (Z)-9-pentacosene and (Z)-7-pentacosene (minor components); every trail wash sample contained all four chemical components, although the amounts and ratios changed with age of the female. Males responded to the full pheromone blend, regardless of mating status, but virgin females chose the control over the pheromone, suggesting that they may use it as a spacing pheromone to avoid intraspecific competition and maximize resources. Virgin, but not mated, males also chose the major pheromone components in the absence of the minor components, over the control. Taken together, these results indicate that all four chemicals are components of the trail pheromone. The timing of production of the ratios of the pheromone blend components that produced positive responses from males coincided with the timing of sexual maturation of the female. Topics: Alkenes; Animals; Coleoptera; Female; Male; Sex Attractants; Sexual Behavior, Animal; Sexual Maturation | 2014 |