7-methylguanosine and 7-methylinosine

7-methylguanosine has been researched along with 7-methylinosine* in 2 studies

Other Studies

2 other study(ies) available for 7-methylguanosine and 7-methylinosine

ArticleYear
Calf spleen purine nucleoside phosphorylase: complex kinetic mechanism, hydrolysis of 7-methylguanosine, and oligomeric state in solution.
    Biochimica et biophysica acta, 2002, Apr-29, Volume: 1596, Issue:2

    The active enzyme form was found to be a homotrimer, no active monomers were observed. Only in the presence of an extremely high orthophosphate concentration (0.5 M) or at a low enzyme concentration (0.2 microg/ml) with no ligands present a small fraction of the enzyme is probably in a dissociated and/or non-active form. The specific activity is invariant over a broad enzyme concentration range (0.017 microg/ml-0.29 mg/ml). At concentrations below 0.9 microg/ml and in the absence of ligands the enzyme tends to loose its catalytic activity, while in the presence of any substrate or at higher concentrations it was found to be active as a trimer. In the absence of phosphate the enzyme catalyses the hydrolysis of 7-methylguanosine (m7Guo) with a catalytic rate constant 1.3x10(-3) x s(-1) as compared with the rate of 38 s(-1) for the phosphorolysis of this nucleoside. The initial pre-steady-state phase of the phosphorolysis of m7Guo, 70 s(-1), is almost twice faster than the steady-state rate and indicates that the rate-limiting step is subsequent to the glycosidic bond cleavage. Complex kinetic behaviour with substrates of phosphorolytic direction (various nucleosides and orthophosphate) was observed; data for phosphate as the variable substrate with inosine and guanosine, but not with their 7-methyl counterparts, might be interpreted as two binding sites with different affinities, or as a negative cooperativity. However, the titration of the enzyme intrinsic fluorescence with 0.2 microM-30 mM phosphate is consistent with only one dissociation constant for phosphate, K(d)=220+/-120 microM. Protective effects of ligands on the thermal inactivation of the enzyme indicate that all substrates of the phosphorolytic and the synthetic reactions are able to form binary complexes with the calf spleen purine nucleoside phosphorylase. The purine bases, guanine and hypoxanthine, bind strongly with dissociation constants of about 0.1 microM, while all other ligands studied, including 7-methylguanine and 7-methylhypoxanthine, bind at least 3 orders of magnitude less potently. Binding of guanine and hypoxanthine is about 10-fold weakened by the presence of phosphate. These observations are best interpretable by the complex kinetic mechanism of the phosphorolytic reaction involving (i) random substrate binding, (ii) unusually slow, hence strongly rate-limiting, dissociation of the products guanine and hypoxanthine, but not 7-methylguanine and 7-methylhypoxanthine, and (iii)

    Topics: Animals; Buffers; Cattle; Guanosine; Inosine; Kinetics; Phosphates; Purine-Nucleoside Phosphorylase; Spleen; Substrate Specificity; Sulfates; Time Factors

2002
Properties of two unusual, and fluorescent, substrates of purine-nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine.
    Biochimica et biophysica acta, 1986, Dec-12, Volume: 874, Issue:3

    The properties of two unusual substrates of calf spleen purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1), 7-methylguanosine and 7-methylinosine, are described. The corresponding bases, 7-methylguanine and 7-methylhypoxanthine, are neither substrates in the reverse, synthetic reaction, nor inhibitors of the phosphorolysis reaction. Both nucleosides exhibit fluorescence, which disappears on cleavage of the glycosidic bond, providing a new convenient procedure for continuous fluorimetric assay of enzymatic activity. For 7-methylguanosine at neutral pH and 25 degrees C, Vmax = 3.3 mumol/min per unit enzyme and Km = 14.7 microM, so that Vmax/Km = 22 X 10(-2)/min per unit as compared to 8 X 10(-2) for the commonly used substrate inosine. The permissible initial substrate concentration range is 5-100 microM. Enzyme activity may also be monitored spectrophotometrically. For 7-methylinosine, Vmax/Km is much lower, 2.4 X 10(-2), but its 10-fold higher fluorescence partially compensates for this, and permits the use of initial substrate concentrations in the range 1-500 microM. At neutral pH both substrates are mixtures of cationic and zwitterionic forms. Measurements of pH-dependence of kinetic constants indicated that the cationic forms are the preferred substrates, whereas the monoanion of inosine appears to be almost as good a substrate as the neutral form. With 7-methylguanosine as substrate, and monitoring of activity fluorimetrically and spectrophotometrically, inhibition constants were measured for several known inhibitors, and the results compared with those obtained with inosine as substrate, and with results reported for the enzyme from other sources.

    Topics: Animals; Cattle; Guanosine; Inosine; Kinetics; Pentosyltransferases; Purine-Nucleoside Phosphorylase; Spectrometry, Fluorescence; Spleen; Substrate Specificity

1986