6-methyltetrahydropterin and tetrahydropterin

6-methyltetrahydropterin has been researched along with tetrahydropterin* in 4 studies

Other Studies

4 other study(ies) available for 6-methyltetrahydropterin and tetrahydropterin

ArticleYear
Neurochemical effects following peripheral administration of tetrahydropterin derivatives to the hph-1 mouse.
    Journal of neurochemistry, 1996, Volume: 66, Issue:3

    The hph-1 mouse which displays tetrahydrobiopterin deficiency and impaired dopamine and serotonin turnover, has been used to study cofactor replacement therapy for disorders causing brain tetrahydrobiopterin deficiency. Subcutaneous administration of 100 mumol/kg (30 mg/kg) of tetrahydrobiopterin resulted in a twofold increase in brain cofactor concentration 1 h after administration. Concentrations remained above the endogenous level for at least 4 h but returned to normal by 24 h. The lipophilic tetrahydrobiopterin analogue 6-methyltetrahydropterin entered the brain five times more efficiently than tetrahydrobiopterin but was cleared at a faster rate. Tetrahydropterins linked to the lipoidal carrier N-benzyl-1, 4-dihydronicotinoyl did not result in a detectable increase in levels of brain pterins over the period of the study (1-4 h). Stimulation of monoamine turnover was not observed at any time point with either natural cofactor or the methyl analogue. Increasing the amount of tetrahydrobiopterin to 1,000 mumol/kg resulted in elevation of cofactor concentrations, a brief increase in the activity of tyrosine and tryptophan hydroxylase 1 h postadministration, and increased turnover of dopamine and serotonin metabolites lasting 24 h. However, 2 of 12 (17%) mice died following administration of this dose of cofactor. Our findings suggest that acute peripheral tetrahydrobiopterin administration is unlikely to stimulate brain monoamine turnover directly unless very large and potentially toxic doses of cofactor are used.

    Topics: Animals; Blood-Brain Barrier; Brain; Dopamine; Injections, Subcutaneous; Mice; Mice, Mutant Strains; Pterins; Serotonin

1996
Biopterin synthesis defect. Treatment with L-dopa and 5-hydroxytryptophan compared with therapy with a tetrahydropterin.
    The Journal of clinical investigation, 1984, Volume: 73, Issue:2

    We have identified a generalized deficiency of monoamine neurotransmitters in a patient with a defect in biopterin synthesis. Neurotransmitter precursors (L-3,4-dihydroxyphenylalanine [L-dopa]; 5-hydroxytryptophan [5-HTP] and a tetrahydropterin [6-methyltetrahydropterin (6MPH4)] were investigated for their ability to normalize monoamine neurotransmitter metabolism. Before treatment, the concentrations of dopamine (DA), norepinephrine, epinephrine, and six monoamine metabolites were very low or undetectable in plasma, cerebrospinal fluid, or urine. L-Dopa and 5-HTP replacement was begun at age 7 mo. This therapy generally corrected the deficiency of monoamines and their metabolites, and improved neurological development until the age of 25 mo. Despite these benefits, the intermittent administration of L-dopa could not produce a stable improvement of acute neurological function or DA metabolism. In the 3 h after L-dopa administration, plasma DA and the motor activity and alertness of the patient rose and fell in parallel. Doses of L-dopa that were clinically optimal produced normal plasma levels of norepinephrine and epinephrine, but excessive concentrations of DA and its metabolites. Furthermore, the clinical and biochemical effects of L-dopa were inhibited by phenylalanine and 5-HTP, respectively, demonstrating that these amino acids have antagonistic pharmacological effects. Physiological correction of the monoamine deficit and the hyperphenylalaninemia of this disorder was attempted at age 35 mo using high doses (8-38 mg/kg per d) of 6MPH4. 6MPH4, a synthetic analogue of tetrahydrobiopterin, controlled the hyperphenylalaninemia. Significant concentrations of 6MPH4 were obtained in the cerebrospinal fluid; no neurological improvement or stimulation of monoamine synthesis in the central nervous system was detected. These findings indicate the complexity in replacement therapy with L-dopa and 5-HTP, but suggest that this treatment may be partially effective in biopterin-deficient patients who are unresponsive to high doses of tetrahydropterins.

    Topics: 5-Hydroxytryptophan; Amino Acid Metabolism, Inborn Errors; Biopterins; Carbidopa; Catecholamines; Dose-Response Relationship, Drug; Female; Humans; Infant; Levodopa; Neopterin; Neurotransmitter Agents; Pteridines; Pterins

1984
The mechanism of phenylalanine hydroxylase.
    Federation proceedings, 1982, Volume: 41, Issue:9

    The site of oxygen binding during phenylalanine hydroxylase (PAH)-catalyzed turnover of phenylalanine to tyrosine has been tentatively identified as the 4a position of the tetrahydropterin cofactor, based on the spectral characteristics of an intermediate generated from both 6-methyltetrahydropterin and tetrahydrobiopterin during turnover. The rates of appearance of the intermediate and tyrosine are equal. Both rates exhibit the same dependence on enzyme concentration. PAH also requires 1.0 iron per 50,000-dalton subunit for maximal activity. A direct correlation between iron content and specific activity has been demonstrated. Apoenzyme can be reactivated by addition of Fe(II) aerobically or Fe(III) anaerobically and can be repurified to give apparently native protein. Evidence from electron paramagnetic resonance implicates the presence of high spin (5/2) Fe(III). As a working hypothesis we postulate that a key complex at the active site may be one containing iron in close proximity to a 4a-peroxytetrahydropterin.

    Topics: Apoenzymes; Chemical Phenomena; Chemistry; Coenzymes; Electron Spin Resonance Spectroscopy; Ferric Compounds; Ferrous Compounds; Oxidation-Reduction; Phenylalanine Hydroxylase; Pterins

1982
Use of tetrahydropterins in the treatment of hyperphenylalaninemia due to defective synthesis of tetrahydrobiopterin: evidence that peripherally administered tetrahydropterins enter the brain.
    Pediatrics, 1982, Volume: 70, Issue:3

    Substantial amounts of tetrahydrobiopterin and 6-methyltetrahydropterin can be detected in CSF when these pterins are given peripherally to patients with hyperphenylalaninemia due to defective biopterin synthesis. Results of this study suggest that administration of either of these pterins in proper doses may prove to be a treatment not only for the impaired peripheral phenylalanine metabolism, but also for the neurologic disorders that are characteristic of the variant forms of hyperphenylalaninemia due to defective tetrahydrobiopterin synthesis or metabolism.

    Topics: Biopterins; Brain; Child; Child, Preschool; Female; Humans; Male; Neopterin; Phenylalanine; Phenylketonurias; Pteridines; Pterins

1982