6-methyl-2-(phenylethynyl)pyridine and fenobam

6-methyl-2-(phenylethynyl)pyridine has been researched along with fenobam* in 12 studies

Reviews

1 review(s) available for 6-methyl-2-(phenylethynyl)pyridine and fenobam

ArticleYear
Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors.
    Current opinion in pharmacology, 2006, Volume: 6, Issue:1

    Metabotropic glutamate receptors (mGluRs) have been proposed as novel targets for the treatment of a variety of disorders. Recently, highly selective allosteric modulators of the mGluRs have been developed by several groups. These allosteric compounds provide an unprecedented degree of selectivity for individual mGluRs, allowing for more detailed functional studies on the roles of these receptors. Furthermore, the allosteric approach avoids many of the hurdles associated with the development of direct agonists as drugs, and provides a clear path forward for clinical proof-of-concept studies. Currently, both positive allosteric modulators of mGluR2 and negative allosteric modulators of mGluR5 hold promise as novel anxiolytics, and positive allosteric modulators of mGluR4 appear to be an exciting new target for the treatment of Parkinson's disease.

    Topics: Animals; Anxiety; Benzopyrans; Clinical Trials as Topic; Drug Evaluation, Preclinical; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Humans; Imidazoles; Parkinson Disease; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Sulfonamides

2006

Other Studies

11 other study(ies) available for 6-methyl-2-(phenylethynyl)pyridine and fenobam

ArticleYear
Selective Blockade of the Metabotropic Glutamate Receptor mGluR5 Protects Mouse Livers in In Vitro and Ex Vivo Models of Ischemia Reperfusion Injury.
    International journal of molecular sciences, 2018, Jan-23, Volume: 19, Issue:2

    2-Methyl-6-(phenylethynyl)pyridine (MPEP), a negative allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, protects hepatocytes from ischemic injury. In astrocytes and microglia, MPEP depletes ATP. These findings seem to be self-contradictory, since ATP depletion is a fundamental stressor in ischemia. This study attempted to reconstruct the mechanism of MPEP-mediated ATP depletion and the consequences of ATP depletion on protection against ischemic injury. We compared the effects of MPEP and other mGluR5 negative modulators on ATP concentration when measured in rat hepatocytes and acellular solutions. We also evaluated the effects of mGluR5 blockade on viability in rat hepatocytes exposed to hypoxia. Furthermore, we studied the effects of MPEP treatment on mouse livers subjected to cold ischemia and warm ischemia reperfusion. We found that MPEP and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) deplete ATP in hepatocytes and acellular solutions, unlike fenobam. This finding suggests that mGluR5s may not be involved, contrary to previous reports. MPEP, as well as MTEP and fenobam, improved hypoxic hepatocyte viability, suggesting that protection against ischemic injury is independent of ATP depletion. Significantly, MPEP protected mouse livers in two different ex vivo models of ischemia reperfusion injury, suggesting its possible protective deployment in the treatment of hepatic inflammatory conditions.

    Topics: Adenosine Triphosphate; Animals; Cell Hypoxia; Disease Models, Animal; Hepatocytes; Imidazoles; Liver; Mice; Mitochondria, Liver; Piperidines; Pyridines; Rats; Receptor, Metabotropic Glutamate 5; Reperfusion Injury; Thiazoles; Tumor Necrosis Factor-alpha

2018
Insights into the interaction of negative allosteric modulators with the metabotropic glutamate receptor 5: discovery and computational modeling of a new series of ligands with nanomolar affinity.
    Bioorganic & medicinal chemistry, 2015, Jul-01, Volume: 23, Issue:13

    Metabotropic glutamate receptor 5 (mGlu5) is a biological target implicated in major neurological and psychiatric disorders. In the present study, we have investigated structural determinants of the interaction of negative allosteric modulators (NAMs) with the seven-transmembrane (7TM) domain of mGlu5. A homology model of the 7TM receptor domain built on the crystal structure of the mGlu1 template was obtained, and the binding modes of known NAMs, namely MPEP and fenobam, were investigated by docking and molecular dynamics simulations. The results were validated by comparison with mutagenesis data available in the literature for these two ligands, and subsequently corroborated by the recently described mGlu5 crystal structure. Moreover, a new series of NAMs was synthesized and tested, providing compounds with nanomolar affinity. Several structural modifications were sequentially introduced with the aim of identifying structural features important for receptor binding. The synthesized NAMs were docked in the validated homology model and binding modes were used to interpret and discuss structure-activity relationships within this new series of compounds. Finally, the models of the interaction of NAMs with mGlu5 were extended to include important non-aryl alkyne mGlu5 NAMs taken from the literature. Overall, the results provide useful insights into the molecular interaction of negative allosteric modulators with mGlu5 and may facilitate the design of new modulators for this class of receptors.

    Topics: Allosteric Regulation; Allosteric Site; Antipsychotic Agents; Drug Discovery; Humans; Imidazoles; Kinetics; Ligands; Molecular Docking Simulation; Molecular Dynamics Simulation; Protein Binding; Protein Structure, Tertiary; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Structural Homology, Protein; Structure-Activity Relationship

2015
Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways.
    Molecular neurobiology, 2015, Volume: 52, Issue:3

    We previously reported that animals withdrawn from repeated cocaine exposure exhibited a selective deficit in the ability to elicit metabotropic glutamate receptor 5 (mGluR5)-dependent long-term depression (LTD) in the nucleus accumbens (NAc) shell. To determine whether such impairment occurs in the NAc in a cell-type-specific manner, we used bacterial artificial chromosome (BAC) transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of gene regulatory elements for the dopamine D1 receptor (Drd1) or dopamine D2 receptor (Drd2) to identify distinct subpopulations of medium spiny neurons (MSNs). We found that bath application of group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reliably induced LTD in both NAc shell and core MSNs of wild-type, hemizygous Drd1-eGFP, and Drd2-eGFP mice. Confirming our previous results, cocaine withdrawal selectively impaired DHPG-LTD in NAc shell Drd1-expressing direct and Drd2-expressing indirect pathway MSNs. We also found that the expression of DHPG-LTD in NAc MSNs was not affected by the Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 1-naphthyl acetyl spermine. Furthermore, systemic administration of mGluR5-negative allosteric modulator fenobam before the daily injection of cocaine preserved mGluR5 function and significantly reduced the expression of cocaine-induced behavioral sensitization. These results reveal that withdrawal from repeated cocaine exposure may result in the impairment of NAc mGluR5-LTD in a subregion- but not cell-type-specific manner and suggests that pharmacological antagonism of mGluR5 may represent a potential strategy for reducing cocaine-induced addictive behaviors.

    Topics: Animals; Benzamides; Chromones; Cocaine; Cocaine-Related Disorders; Dopaminergic Neurons; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Genes, Reporter; Glycine; Imidazoles; Long-Term Synaptic Depression; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Tissue Proteins; Nucleus Accumbens; Pyrazoles; Pyridazines; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Dopamine D1; Receptors, Dopamine D2; Resorcinols; Substance Withdrawal Syndrome

2015
A novel mGluR5 antagonist, MFZ 10-7, inhibits cocaine-taking and cocaine-seeking behavior in rats.
    Addiction biology, 2014, Volume: 19, Issue:2

    Pre-clinical studies suggest that negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5), including 2-methyl-6-(phenylethynyl)pyridine (MPEP), 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and fenobam are highly effective in attenuating drug-taking and drug-seeking behaviors. However, both MPEP and MTEP have no translational potential for use in humans because of their off-target effects and short half-lives. Here, we report that 3-fluoro-5-[(6-methylpyridin-2-yl)ethynyl]benzonitrile (MFZ 10-7), a novel mGluR5 NAM, is more potent and selective than MPEP, MTEP and fenobam in both in vitro binding and functional assays. Similar to MTEP, intraperitoneal administration of MFZ 10-7 inhibited intravenous cocaine self-administration, cocaine-induced reinstatement of drug-seeking behavior and cocaine-associated cue-induced cocaine-seeking behavior in rats. Although MFZ 10-7 and MTEP lowered the rate of oral sucrose self-administration, they did not alter total sucrose intake. Further, MFZ 10-7 appeared to be more potent than MTEP in inducing downward shifts in the cocaine dose-response curve, but less effective than MTEP in attenuating sucrose-induced reinstatement of sucrose-seeking behavior. MFZ 10-7 and MTEP had no effect on basal locomotor behavior. These findings not only provide additional evidence supporting an important role for mGluR5 in cocaine reward and addiction, but also introduce a new tool for both in vitro and in vivo investigations with which to further characterize this role.

    Topics: Allosteric Regulation; Analysis of Variance; Animals; Binding, Competitive; Cocaine; Cues; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Drug-Seeking Behavior; Enzyme-Linked Immunosorbent Assay; Excitatory Amino Acid Antagonists; HEK293 Cells; Humans; Imidazoles; In Vitro Techniques; Infusions, Intravenous; Inhibitory Concentration 50; Male; Motor Activity; Nitriles; Piperidines; Pyridines; Random Allocation; Rats; Receptor, Metabotropic Glutamate 5; Reinforcement Schedule; Reward; Secondary Prevention; Self Administration; Sucrose; Thiazoles

2014
mGluR5 antagonist-induced psychoactive properties: MTEP drug discrimination, a pharmacologically selective non-NMDA effect with apparent lack of reinforcing properties.
    The Journal of pharmacology and experimental therapeutics, 2014, Volume: 349, Issue:1

    Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], a potent metabotropic glutamate mGluR5 receptor antagonist, reported to have analgesic effects in animals and anxiolytic effects in humans, also caused adverse events, including psychostimulant-type effects and "derealization phenomena." Recent electrophysiologic, pharmacologic, and anatomic data show that the mGluR5 antagonists 2-methyl-6-(phenylethynyl)pyridine (MPEP) and (E)-2-methyl-6-styryl-pyridine (SIB-1893) can inhibit NMDA receptor-mediated activity and that mGluR5 receptors are highly expressed in limbic and forebrain regions. The present studies first evaluated the potential of mGluR5 receptor antagonists to cause PCP-like psychoactive effects in a rat drug discrimination procedure and, second, explored and characterized the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) as a discriminative stimulus and compared MTEP with other drugs known to be psychoactive in humans. Additionally, the reinforcing potential of MPEP and MTEP was compared with phencyclidine (PCP) in a rat intravenous self-administration procedure. Dizocilpine [(+)-MK-801] and ketamine caused full PCP-appropriate responding. Memantine and the mGluR5 antagonists caused no or weak partial PCP-appropriate responding. In MTEP-trained rats, MTEP, MPEP, and fenobam caused full and equipotent MTEP-appropriate responding. (+)-MK-801 and memantine caused MTEP-appropriate responding below 70%, whereas PCP, chlordiazepoxide and LSD caused MTEP-appropriate responding below 50%. Δ(9)-Tetrahydrocannabinol, yohimbine, arecoline, and pentylenetetrazole all caused MTEP-appropriate responding below 20%. Rats self-administered PCP but not MPEP or MTEP, indicating a lack of reinforcing effects of the mGluR5 antagonists. These data suggest that the mGluR5 antagonists appear not to have reinforcing properties, that the discriminative effects of mGluR5 antagonists and PCP are dissimilar, and that mGluR5 antagonists may produce psychoactive effects different from NMDA-antagonists and other drugs with known psychotomimetic properties.

    Topics: Animals; Behavior, Animal; Discrimination, Psychological; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Imidazoles; Male; Phencyclidine; Psychotropic Drugs; Pyridines; Rats; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, N-Methyl-D-Aspartate; Reinforcement, Psychology; Self Administration; Thiazoles

2014
The mGluR5 antagonist fenobam induces analgesic conditioned place preference in mice with spared nerve injury.
    PloS one, 2014, Volume: 9, Issue:7

    Antagonists of metabotropic glutamate receptors (mGluRs) have the potential to act as analgesic drugs that may help alleviate chronic pain. This study was done to look at the possible rewarding properties of the mGluR5 antagonist, fenobam, in a cognitive assay. Analgesic conditioned place preference (aCPP) was used to examine the effects of fenobam (30 mg/kg) and the prototypical mGluR5 antagonist, MPEP, and these effects were compared to those of a drug with known analgesic properties, morphine (10 mg/kg). In each experiment, one group of mice received spared nerve injury (SNI) surgery to model chronic pain; the other group received a control sham surgery. Both fenobam and MPEP induced preference in the SNI mice, such that SNI mice spent significantly more time in the mGluR5 antagonist-paired chamber compared to a vehicle-paired chamber. No such preference developed for sham mice. Morphine induced preference in male and female mice in both the SNI and sham groups. The results showed that fenobam and MPEP likely reduced on-going distress in the SNI mice, causing them to prefer the chamber paired with the drug compared to the vehicle-paired chamber. Since sham animals did not prefer the drug-paired chamber, these data demonstrate that mGluR5 antagonism is non-rewarding in the absence of pain-like injury.

    Topics: Analgesics; Animals; Conditioning, Classical; Excitatory Amino Acid Antagonists; Female; Imidazoles; Male; Mice; Mice, Inbred C57BL; Morphine; Peripheral Nerve Injuries; Pyridines; Receptor, Metabotropic Glutamate 5

2014
The metabotropic glutamate receptor subtype 5 antagonist fenobam is analgesic and has improved in vivo selectivity compared with the prototypical antagonist 2-methyl-6-(phenylethynyl)-pyridine.
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 330, Issue:3

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been demonstrated to play a role in the modulation of numerous nociceptive modalities. When administered via peripheral, intrathecal, or systemic routes, mGlu5 antagonists have analgesic properties in a variety of preclinical pain models. Despite a wealth of data supporting the use of mGlu5 antagonists to treat pain, studies have been limited to preclinical animal models due to a lack of mGlu5 antagonists that are approved for use in humans. It has been demonstrated previously that fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], an anxiolytic shown to be safe and effective in human trials, is a selective and potent noncompetitive antagonist of mGlu5 (J Pharmacol Exp Ther 315:711-721, 2005). Here, we report a series of studies aimed at testing whether fenobam, similar to the prototypical mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has analgesic properties in mice. We show that fenobam reduces formalin-induced pain behaviors and relieves established inflammation-induced thermal hypersensitivity in mice. Similar results were seen with MPEP. Administration of fenobam resulted in an increase in locomotor activity in the open-field task but did not impair performance on the accelerating Rotarod. Analysis of brain and plasma fenobam levels indicated that fenobam is rapidly concentrated in brain after intraperitoneal administration in mice but is essentially cleared from circulation within 1 h after injection. Fenobam had no analgesic effect in mGlu5 knockout mice, whereas the prototypical antagonist MPEP retained significant analgesic efficacy in mGlu5 knockouts. These results demonstrate that fenobam is analgesic in mice and has an improved in vivo selectivity for mGlu5 over MPEP.

    Topics: Analgesics, Non-Narcotic; Animals; Behavior, Animal; Brain; Calibration; Chromatography, High Pressure Liquid; Formaldehyde; Freund's Adjuvant; Hot Temperature; Imidazoles; Indicators and Reagents; Inflammation; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Motor Activity; Pain; Pain Measurement; Postural Balance; Pyridines; Quality Control; Receptors, Kainic Acid

2009
Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice.
    Neurobiology of disease, 2008, Volume: 31, Issue:1

    Lack of fragile X mental retardation protein (FMRP) causes Fragile X Syndrome, the most common form of inherited mental retardation. FMRP is an RNA-binding protein and is a component of messenger ribonucleoprotein complexes, associated with brain polyribosomes, including dendritic polysomes. FMRP is therefore thought to be involved in translational control of specific mRNAs at synaptic sites. In mice lacking FMRP, protein synthesis-dependent synaptic plasticity is altered and structural malformations of dendritic protrusions occur. One hypothesized cause of the disease mechanism is based on exaggerated group I mGluR receptor activation. In this study, we examined the effect of the mGluR5 antagonist MPEP on Fragile X related behavior in Fmr1 KO mice. Our results demonstrate a clear defect in prepulse inhibition of startle in Fmr1 KO mice, that could be rescued by MPEP. Moreover, we show for the first time a structural rescue of Fragile X related protrusion morphology with two independent mGluR5 antagonists.

    Topics: Animals; Behavior, Animal; Cells, Cultured; Excitatory Amino Acid Antagonists; Fragile X Mental Retardation Protein; Fragile X Syndrome; Hippocampus; Imidazoles; Mice; Mice, Knockout; Microscopy, Confocal; Neurons; Phenotype; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Reflex, Startle

2008
Synthesis and biological evaluation of fenobam analogs as mGlu5 receptor antagonists.
    Bioorganic & medicinal chemistry letters, 2007, Mar-01, Volume: 17, Issue:5

    Optimization of affinity and microsomal stability led to identification of the potent, metabolically stable fenobam analog 4l. Robust in vivo efficacy of 4l was demonstrated in four different models of anxiety. Additionally, a ligand based pharmacophore alignment of fenobam and MPEP is proposed.

    Topics: Animals; Anti-Anxiety Agents; Drug Design; Humans; Imidazoles; Ligands; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Structure-Activity Relationship

2007
Comparison of the binding pockets of two chemically unrelated allosteric antagonists of the mGlu5 receptor and identification of crucial residues involved in the inverse agonism of MPEP.
    Journal of neurochemistry, 2006, Volume: 98, Issue:2

    Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], a clinically validated non-benzodiazepine anxiolytic, has been shown to be a potent and non-competitive metabotropic glutamate (mGlu)-5 receptor antagonist. In the present study, we have used the site-directed mutagenesis coupled with three-dimensional receptor-based pharmacophore modelling to elucidate the interacting mode of fenobam within the seven-transmembrane domain (7TMD) of mGlu5 receptor and its comparison with that of 2-methyl-6-(phenylethynyl)pyridine (MPEP), the prototype antagonist. The common residues involved in the recognition of MPEP and fenobam include Pro654(3.36), Tyr658(3.40), Thr780(6.44), Trp784(6.48), Phe787(6.51), Tyr791(6.55) and Ala809(7.47). The differentiating residues between both modulators' interacting modes are Arg647(3.29), Ser657(3.39) and Leu743(5.47). Our data suggest that these chemically unrelated mGlu5 antagonists act similarly, probing a functionally unique region of the 7TMD. Using [3H]inositol phosphates accumulation assay, we have also identified the critical residues involved in the inverse agonist effect of MPEP. The mutation W784(6.48)A completely blocked the inverse agonist activity of MPEP; two mutations F787(6.51)A and Y791(6.55)A, caused a drastic decrease in the MPEP inverse agonism. Furthermore, these three mutations led to an increased efficacy of quisqualate without having any effect on its potency. The fact that the residues Trp784(6.48) and Phe787(6.51) are essential equally in antagonism and inverse agonism effects emphasizes again the key role of these residues and the involvement of a common transmembrane network in receptor inactivation by MPEP.

    Topics: Binding Sites; Calcium; Cell Line; Cell Membrane; Cells, Cultured; Excitatory Amino Acid Antagonists; Fluorometry; Humans; Imidazoles; Inositol Phosphates; Models, Molecular; Mutation; Plasmids; Pyridines; Quisqualic Acid; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Thiazoles

2006
Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity.
    The Journal of pharmacology and experimental therapeutics, 2005, Volume: 315, Issue:2

    Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC(50) = 58 +/- 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC(50) = 84 +/- 13 nM. [(3)H]Fenobam bound to rat and human recombinant receptors with K(d) values of 54 +/- 6 and 31 +/- 4 nM, respectively. MPEP inhibited [(3)H]fenobam binding to human mGlu5 receptors with a K(i) value of 6.7 +/- 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.

    Topics: Animals; Anti-Anxiety Agents; Cell Line; Cells, Cultured; CHO Cells; Conditioning, Operant; Conflict, Psychological; Cricetinae; Cyclic AMP; DNA, Complementary; Drinking Behavior; Emotions; Fever; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Imidazoles; Inositol Phosphates; Male; Mice; Plasmids; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Stress, Physiological

2005