6-methyl-2-(phenylethynyl)pyridine and 3-methoxytyramine

6-methyl-2-(phenylethynyl)pyridine has been researched along with 3-methoxytyramine* in 1 studies

Other Studies

1 other study(ies) available for 6-methyl-2-(phenylethynyl)pyridine and 3-methoxytyramine

ArticleYear
Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys.
    Progress in neuro-psychopharmacology & biological psychiatry, 2015, Jan-02, Volume: 56

    In Parkinson's disease (PD) and l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs), overactivity of brain glutamate neurotransmission is documented and antiglutamatergic drugs decrease LID. Serotonin (5-HT) receptors and transporter (SERT) are also implicated in LID and we hypothesize that antiglutamatergic drugs can also regulate brain serotoninergic activity. Our aim was to investigate the long-term effect of the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) with L-DOPA on basal ganglia SERT, 5-HT(1A) and 5-HT(2A) receptor levels in monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP monkeys were treated for one month with L-DOPA and developed LID while those treated with L-DOPA and MPEP (10 mg/kg) developed significantly less LID. Normal controls and saline-treated MPTP monkeys were included for biochemical analysis. The MPTP lesion and experimental treatments left unchanged striatal 5-HT concentrations. MPTP lesion induced an increase of striatal 5-HIAA concentrations similar in all MPTP monkeys as compared to controls. [(3)H]-8-OH-DPAT and [(3)H]-citalopram specific binding levels to 5-HT(1A) receptors and SERT respectively remained unchanged in the striatum and globus pallidus of all MPTP monkeys compared to controls and no difference was observed between groups of MPTP monkeys. [(3)H]-ketanserin specific binding to striatal and pallidal 5-HT2A receptors was increased in L-DOPA-treated MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys and no difference between the latter groups was observed; dyskinesia scores correlated positively with this binding. In conclusion, reduction of development of LID with MPEP was associated with lower striatal and pallidal 5-HT2A receptors showing that glutamate activity also affects serotoninergic markers.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Benserazide; Brain; Disease Models, Animal; Dopamine; Dopamine Agents; Dose-Response Relationship, Drug; Drug Combinations; Dyskinesia, Drug-Induced; Excitatory Amino Acid Antagonists; Female; Homovanillic Acid; Levodopa; Macaca fascicularis; Ovariectomy; Parkinsonian Disorders; Protein Binding; Pyridines; Serotonin

2015