6-methyl-2-(phenylethynyl)pyridine and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

6-methyl-2-(phenylethynyl)pyridine has been researched along with 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline* in 4 studies

Other Studies

4 other study(ies) available for 6-methyl-2-(phenylethynyl)pyridine and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

ArticleYear
Involvement of serotonergic system in the effect of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test.
    Journal of pharmacological sciences, 2015, Volume: 127, Issue:1

    The blockade of metabotropic glutamate 5 (mGlu5) receptor has been reported to exert antidepressant effects in several animal models. We previously reported that both ketamine and an mGlu5 receptor antagonist exerted an effect in a novelty-suppressed feeding (NSF) test, and that the effect of ketamine may be mediated through an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-dependent increase in serotonergic transmission. However, the involvement of the serotonergic system in the effect of mGlu5 receptor antagonists in the NSF test is not well understood. Therefore, we examined the roles of the serotonergic system in the effect of an mGlu5 receptor antagonist, 6-methyl-2-(phenylethynyl)pyridine hydrochloride (MPEP), in the NSF test in mice. The administration of MPEP significantly shortened the latency to feed, which was not attenuated by the AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX). The effect of MPEP was abolished by the tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA). Moreover, the effect of MPEP was blocked by a serotonin (5-HT)2A/2C receptor antagonist, ritanserin, but not by a 5-HT1A receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635). These results suggest that the effect of an mGlu5 receptor antagonist may be mediated by the serotonergic system, including the stimulation of the 5-HT2A/2C receptor, in an AMPA receptor-independent manner in the NSF test.

    Topics: Animals; Excitatory Amino Acid Antagonists; Feeding Behavior; Fenclonine; Male; Mice; Piperazines; Pyridines; Quinoxalines; Receptor, Metabotropic Glutamate 5; Ritanserin; Serotonin; Serotonin Antagonists

2015
Dopamine triggers heterosynaptic plasticity.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, Apr-17, Volume: 33, Issue:16

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area to the nucleus accumbens core (NAcCo), action-potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action-potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the ventral tegmental area to NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal.

    Topics: Analysis of Variance; Animals; Benzoates; Channelrhodopsins; Cocaine; Dopamine; Dopamine Uptake Inhibitors; Electric Stimulation; GABAergic Neurons; Genetic Vectors; Glycine; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Long-Term Synaptic Depression; Male; Nucleus Accumbens; Optogenetics; Phosphinic Acids; Photic Stimulation; Propanolamines; Pyridines; Quinoxalines; Rats; Rats, Sprague-Dawley; Synapses; Time Factors; Transduction, Genetic; Tyrosine 3-Monooxygenase; Ventral Tegmental Area

2013
Group II metabotropic and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 306, Issue:3

    This study investigated the role of ionotropic and metabotropic glutamate receptors in the deficits in brain reward function, as measured by elevations in intracranial self-stimulation (ICSS) reward thresholds, associated with nicotine withdrawal. The group II metabotropic glutamate (mGluII) receptor agonist LY314582 [a racemic mixture of LY354740 ([+]-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid])] (2.5-7.5 mg/kg) precipitated withdrawal-like elevations in ICSS thresholds, a sensitive measure of reward function, in nicotine-dependent but not control rats. LY314582 did not affect response latencies, a measure of performance in the ICSS paradigm. Bilateral microinfusion of LY314582 (10-100 ng/side) into the ventral tegmental area likewise precipitated dose-dependent threshold elevations in nicotine-dependent rats. Furthermore, a single injection of the mGluII receptor antagonist LY341495 (2S-2-amino-2-[1S,2S-2-carboxycyclopropan-1-yl]-3-[xanth-9-yl]propionic acid) (1 mg/kg) attenuated the threshold elevations observed in rats undergoing spontaneous nicotine withdrawal. mGluII receptors are primarily located on glutamatergic terminals throughout the mesocorticolimbic system, where they act as inhibitory autoreceptors. To investigate whether mGluII receptors contributed to nicotine withdrawal by decreasing glutamatergic transmission, we next examined whether direct blockade of postsynaptic glutamate receptors precipitated withdrawal-like reward deficits in nicotine-dependent rats. The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX; 0.01-1 mg/kg) precipitated withdrawal-like threshold elevations in nicotine-dependent but not control rats, whereas 6-methyl-2-[phenylethynyl]-pyridine (MPEP; 0.01-3 mg/kg) and dizocilpine (MK-801; 0.01-0.2 mg/kg), antagonists at metabotropic glutamate 5 and N-methyl-d-aspartate receptors, respectively, did not. Overall, these data demonstrate that mGluII receptors play an important role in the reward deficits associated with nicotine withdrawal. Furthermore, it is likely that mGluII receptors generate this reward deficit, at least in part, by decreasing glutamate transmission at AMPA/kainate receptors.

    Topics: Animals; Bridged Bicyclo Compounds; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Male; Nicotine; Pyridines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Reward; Substance Withdrawal Syndrome; Ventral Tegmental Area

2003
Contribution of spinal glutamatergic mechanisms in heterosegmental antinociception induced by noxious stimulation.
    Pain, 2003, Volume: 106, Issue:1-2

    We evaluated the role of spinal glutamate and substance P receptors in noxious stimulus-induced antinociception (NSIA). NSIA was produced by subdermal capsaicin administration in the hind paw of the rat and measured as attenuation of the jaw-opening reflex. NSIA was completely blocked by spinal intrathecal administration of the selective NMDA receptor antagonist LY235959 as well as the mGluR5 antagonists MPEP and SIB-1757 and partially attenuated by the selective AMPA/kainate receptor antagonist NBQX; however, neither the mGluR1 receptor antagonist LY367385 nor the NK1 antagonist L-703,606 affected NSIA. These results suggest that NSIA depends on glutamate, released from the central terminals of the primary afferent nociceptors, acting primarily on NMDA and mGluR5 receptors. Although substance P is also known to be released by similar stimuli, NK1 receptors do not appear to play a role in NSIA. The implications of these findings in the context of a proposed spinal circuit that mediates NSIA are discussed.

    Topics: Animals; Benzoates; Capsaicin; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Isoquinolines; Male; Nociceptors; Pyridines; Quinoxalines; Quinuclidines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Stimulation, Chemical; Substance P

2003