6-ketoprostaglandin-f1-alpha has been researched along with seratrodast* in 4 studies
1 trial(s) available for 6-ketoprostaglandin-f1-alpha and seratrodast
Article | Year |
---|---|
Can urinary eicosanoids be a potential predictive marker of clinical response to thromboxane A2 receptor antagonist in asthmatic patients?
Thromboxane (TX) A2 is an important bronchoconstrictor in the pathogenesis of asthma. Seratrodast, known as AA-2414, is a new oral TXA2 receptor antagonist which is currently prescribed in asthma therapy in Japan. However its clinical effects have been very different in individual subjects. To assess whether the clinical efficacy of TXA2 antagonist is predictable on the basis of urinary arachidonic acid metabolites in urine of patients with asthma, an open and multicentre trial was conducted. Fifty adult asthmatic subjects (women/men = 28/22) were enrolled [resting mean forced expiratory volume in 1 sec (FEV1)% was 82%; range, 50-96%]. Urinary levels of 11-dehydro-TXB2, leukotriene (LT) E4, 2,3-dinor-6-keto-prostaglandin F1alpha and creatinine in 3-h urine collected in the morning at the start of seratrodast (80 mg day(-1), once a day at evening for 4 weeks) were measured. Responders were defined by improvements of asthma symptoms score and peak expiratory flow rate (PEFR). Of the 50 subjects, 45 completed this study. Eighteen patients were responders and the other 27 were nonresponders. There were no significant differences between the two groups in patients' characteristics, baseline lung functions, treatments and baseline urinary eicosanoids. The 11-dehydro-TXB2/LTE4 ratio of responders was significantly higher (P = 0.0091) than that of non-responders (mean +/- SE, 7.49+/-0.71 vs. 5.09+/-0.67). Eleven patients out of 18 responders agreed to continue this drug for 6 months, the 11-dehydro-TXB2/LTE4 ratio decreased during this period, but not significantly. Our data demonstrated that responders and non-responders to TXA2 receptor antagonist existed in patients with asthma, and it suggests that the ratio of urinary eicosanoids might be a possible predictor of the effects of TXA2 receptor antagonist. Topics: 6-Ketoprostaglandin F1 alpha; Adult; Aged; Anti-Asthmatic Agents; Asthma; Benzoquinones; Creatinine; Eicosanoids; Female; Forced Expiratory Volume; Heptanoic Acids; Humans; Leukotriene E4; Male; Middle Aged; Peak Expiratory Flow Rate; Receptors, Thromboxane; Thromboxane B2 | 1999 |
3 other study(ies) available for 6-ketoprostaglandin-f1-alpha and seratrodast
Article | Year |
---|---|
AA-2414, an antioxidant and thromboxane receptor blocker, completely inhibits peroxide-induced vasoconstriction in the human placenta.
We hypothesized that AA-2414, a novel thromboxane receptor blocker with antioxidant properties, would inhibit peroxide-induced vasoconstriction in the isolated perfused human placental cotyledon. In study 1, placental cotyledons (n = 5) were perfused serially for 20- min intervals with control KrebsRinger-bicarbonate (KRB) buffer, t-butyl hydroperoxide (Px; 100 microM), KRB buffer, and KRB buffer containing Px to which progressively increasing concentrations of AA-2414 were added (1 x 10(-8) to 1 x 10(-4) mol/l). In study 2, placental cotyledons (n = 6) were perfused with control KRB buffer, Px alone, KRB buffer, 1 x 10(-5) mol/l AA-2414 alone, Px plus AA-2414, and Px alone. Compared with control, perfusion with Px significantly increased perfusion pressure, vascular resistance, and the maternal and fetal secretion rates of lipid peroxides, thromboxane B2 (TXB2) and 6-keto prostaglandin F1alpha. In study 1, AA-2414 + Px produced a dose-response inhibition of Px-induced increases in perfusion pressure, vascular resistance, and maternal secretion of lipid peroxides and TXB2. In study 2, perfusing AA-2414 at a dose of 1 x 10(-5) mol/l completely inhibited Px-induced vasoconstriction and increases in lipid peroxide and TXB2 secretion rates, but only partially inhibited the increase in 6-keto prostaglandin F1alpha secretion. We conclude that AA-2414 inhibited peroxide-induced vasoconstriction in the human placenta, as well as peroxide- induced increases in the placental secretion rates of lipid peroxides and thromboxane, but only partially inhibited peroxide-induced increases in the placental secretion rate of prostacyclin. Topics: 6-Ketoprostaglandin F1 alpha; Antioxidants; Benzoquinones; Blood Pressure; Dose-Response Relationship, Drug; Female; Fetus; Heptanoic Acids; Humans; In Vitro Techniques; Peroxides; Placenta; Pregnancy; Receptors, Thromboxane; Regional Blood Flow; Thromboxane B2; Vascular Resistance; Vasoconstriction | 1999 |
The effect of three novel thromboxane A2 receptor antagonists (S-1452, AA-2414 and ONO-3708) on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs.
The effects were studied of three novel thromboxane A2 (TXA2) receptor antagonists (S-1452, AA-2414 and ONO-3708) on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs. Three TXA2 antagonists at doses of between 1 and 10 mg/kg administered orally 1 h before the challenge clearly inhibited the pulmonary pressure increase. At a dose of 10 mg/kg, all three antagonists inhibited the pulmonary pressure increase caused by leukotriene D4 (LTD4) and U-46619, but not that caused by histamine. The decrease in peripheral platelet counts caused by Forssman anaphylaxis was also clearly inhibited by the three TXA2 antagonists. However, the decreased peripheral leukocyte counts were unaffected by the three agents. The decrease in serum complement activity (CH50) was inhibited by S-1452 and AA-2414 at a dose of 10 mg/kg. In bronchoalveolar lavage fluid (BALF), significant increases in eosinophils and neutrophils were observed after Forssman anaphylaxis. Three TXA2 antagonists at a dose of 10 mg/kg (except for AA-2414 on eosinophils) did not affect the changes of leukocyte counts in BALF. Moreover, increases in the TXB2 and 6-keto-PGF1 alpha levels of the BALF brought about by Forssman anaphylaxis were unaffected by the three TXA2 receptor antagonists. Histamine and LTD4 were not changed in the BALF after Forssman anaphylaxis. These results indicate the efficacy of TXA2 receptor antagonists on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs by direct antagonism to released TXA2. Topics: 6-Ketoprostaglandin F1 alpha; Airway Resistance; Anaphylaxis; Animals; Antibodies, Heterophile; Benzoquinones; Bridged Bicyclo Compounds; Bronchoalveolar Lavage Fluid; Fatty Acids, Monounsaturated; Guinea Pigs; Heptanoic Acids; Histamine; Leukocyte Count; Male; Platelet Count; Quinones; Receptors, Prostaglandin; Receptors, Thromboxane; SRS-A; Thromboxane A2; Thromboxane B2 | 1992 |
The role of thromboxane (TX) A2 in rabbit arterial thrombosis induced by endothelial damage.
To clarify the role of thromboxane (TX) A2 in arterial thrombus formation, we examined the antithrombotic effects of both a TXA2 synthetase inhibitor (CV-4151) and a TXA2 receptor antagonist (AA-2414) on the rabbit common carotid artery thrombosis which was induced by injury of the endothelium by treatment with 0.25% pronase solution. CV-4151 (1,10 mg/kg, p.o.) and AA-2414 (10 mg/kg, p.o.) significantly inhibited thrombus formation. Furthermore, the combined use of CV-4151 and AA-2414 (0.1 mg/kg, p.o. each) significantly inhibited thrombus formation, though these drugs at the same doses had no effect when administered singly. The plasma level of 11-dehydro TXB2 increased significantly during thrombus formation, and CV-4151 (10 mg/kg) markedly inhibited this increase. There was a significant correlation between the in vivo antithrombotic effects of these drugs and their ex vivo inhibitory effects on arachidonic acid-induced platelet aggregation. The antithrombotic effect of CV-4151 also correlated significantly with its ability to inhibit the production of serum TXA2. These results show that TXA2 may play an important role in the thrombus formation in arterial thrombosis. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arachidonic Acid; Arachidonic Acids; Benzoquinones; Carotid Artery Thrombosis; Disease Models, Animal; Endothelium, Vascular; Fatty Acids, Monounsaturated; Heptanoic Acids; Male; Platelet Aggregation; Pyridines; Quinones; Rabbits; Thromboxane A2; Thromboxane B2; Thromboxane-A Synthase | 1990 |