6-ketoprostaglandin-f1-alpha has been researched along with phosphoramidon* in 2 studies
2 other study(ies) available for 6-ketoprostaglandin-f1-alpha and phosphoramidon
Article | Year |
---|---|
Endothelin-induced constriction of the ductus venosus in fetal sheep: developmental aspects and possible interaction with vasodilatory prostaglandin.
1. The ductus venosus is actively regulated in the fetus, but questions remain on the presence of a functional sphincter at its inlet. Using fetal sheep (0.6-0.7 gestation onwards), we have examined the morphology of the vessel and have also determined whether endothelin-1 (ET-1) qualifies as a natural constrictor being modulated by prostaglandins (PGs). 2. Masson's staining and alpha-actin immunohistochemistry showed a muscular, sphincter-like formation at the ductus inlet and a muscle layer within the wall of the vessel proper. This muscle cell component increased with age. 3. ET-1 contracted dose-dependently isolated sphincter and extrasphincter preparations of the ductus from term fetus. This ET-1 effect also occurred in the premature, but its threshold was higher. 4. BQ123 (1 microm) caused a rightward shift in the ET-1 dose-response curve, while indomethacin at a threshold concentration (28 nm) tended to have an opposite effect. 5. Big ET-1 also contracted the ductus sphincter but differed from ET-1 for its lesser potency and inhibition by phosphoramidon (50 microm). 6. The ductus sphincter (term and preterm) and extrasphincter (term) released 6-keto-PGF(1alpha) (hence PGI(2)) and, to a lesser degree, PGE(2) at rest and their release increased dose-dependently upon ET-1 treatment. Both basal and stimulated release was curtailed by endothelium removal. 7. BQ123 and phosphoramidon reduced slightly the contraction of ductus sphincter to indomethacin (2.8 microm). 8. We conclude that the ductus contains a contractile mechanism in the sphincter and extrasphincter regions. ET-1 lends itself to a role in the generation of contractile tone and its action may be modulated by prostaglandins. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Canada; Dinoprostone; Dose-Response Relationship, Drug; Drug Synergism; Endothelin-1; Female; Fetus; Gestational Age; Glycopeptides; Indomethacin; Muscle, Smooth, Vascular; Peptides, Cyclic; Pregnancy; Prostaglandins; Sheep; Thromboxane A2; Umbilical Veins; Vasoconstriction; Vena Cava, Inferior | 2004 |
Coronary constriction and consequent cardiodepression in pulmonary embolism are mediated by pulmonary big endothelin and enhanced in early endothelial dysfunction.
Myocardial ischemia plays a central role in the development of right ventricular failure after acute pulmonary embolism. This study investigates whether pulmonary mediators act specifically on coronary tone and cardiac contractile function in acute pulmonary microembolization and whether such effects are altered in the case of early systemic atherosclerosis. We employ a novel model of serial perfusion in which an isolated rabbit heart is perfused with the effluent of the same animal's isolated lung.. Controlled experiment using isolated organs.. Experimental laboratory.. Male New Zealand White rabbits (controls). Age-matched, male Watanabe rabbits (hypercholesterolemic, development of accelerated atherosclerosis).. Seven isolated control and seven isolated Watanabe hearts were perfused with the saline effluent of the same animal's isolated lung. After the assessment of the baseline data, the lungs were gradually embolized with glass beads measuring 100 microm in diameter to induce an increase in mean pulmonary arterial pressure from 6 to 8 mm Hg, at baseline, up to 25 mm Hg.. Pulmonary embolization to 25 mm Hg evoked a coronary constriction, measured as coronary flow decrease to 89 +/- 7% of the baseline value in controls. In the Watanabe group, coronary constriction was significantly enhanced, compared with controls, with coronary flow decreasing to 76 +/- 6% of the baseline value. In both groups, coronary constriction was followed by a deterioration in cardiac contractile performance. This cardiodepression was significantly deeper in Watanabe hearts with respect to both maximum ventricular pressures and maximum rates of pressure development and decline. Coronary constriction and cardiodepression were prevented by coronary infusion of the nonselective endothelin antagonist PD-145065, the endothelinA antagonists A-127722 and BQ-123, and the endothelin-converting enzyme inhibitor phosphoramidon. Concentration of big endothelin in pulmonary effluent increased from 5.6 +/- 0.3 pmol/L in controls and 5.6 +/- 0.2 pmol/L in the Watanabe group, at baseline, to 8.8 +/- 0.4 pmol/L in controls and 8.9 +/- 0.4 pmol/L in the Watanabe group, at 25 mm Hg pulmonary arterial pressure. Endothelin was not detectable at any time during the experiment in pulmonary effluent. The coronary gradient, calculated as a difference in concentration between coronary and pulmonary effluent, was negative for big endothelin and positive for endothelin in both groups.. We have demonstrated that an increase in pulmonary release of big endothelin occurs during lung embolism, which, in turn, results in coronary constriction and consequent cardiodepression. This action of big endothelin is based on its local coronary conversion into endothelin. In addition, coronary endothelial dysfunction, attributed to early systemic atherosclerosis, was shown to represent a specific risk factor in these events. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arteriosclerosis; Aspartic Acid Endopeptidases; Atrasentan; Coronary Circulation; Endothelin Receptor Antagonists; Endothelin-1; Endothelin-Converting Enzymes; Endothelins; Endothelium, Vascular; Glycopeptides; In Vitro Techniques; Male; Metalloendopeptidases; Myocardial Contraction; Oligopeptides; Peptides, Cyclic; Protein Precursors; Pulmonary Embolism; Pyrrolidines; Rabbits; Thromboxane B2; Vasoconstriction | 1998 |