Page last updated: 2024-08-25

6-hydroxyflavone and apigenin

6-hydroxyflavone has been researched along with apigenin in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (16.67)18.2507
2000's5 (41.67)29.6817
2010's4 (33.33)24.3611
2020's1 (8.33)2.80

Authors

AuthorsStudies
Constantinou, A; Mehta, R; Moon, R; Rao, K; Runyan, C; Vaughan, A1
Dekermendjian, K; Kahnberg, P; Liljefors, T; Nielsen, M; Sterner, O; Witt, MR1
Le Lain, R; Maharlouie, FH; Nicholls, PJ; Smith, HJ1
Komai, K; Morimoto, M; Nakano, A; Nakano, S; Ozaki, T; Tanimoto, K1
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Autino, JC; Bennardi, DO; Castro, EA; Duchowicz, PR; Romanelli, GP; Vitale, MG1
Akamatsu, M; Hosoda, A; Hotta, Y; Ishimoto, Y; Nishizaki, Y; Tamura, H; Yoshikawa, H1
Amić, D; Lucić, B1
Ataide Martins, JP; Borges de Melo, E; Castro Ferreira, MM; Friozi, MC; Marinho Jorge, TC1
Abramić, M; Agić, D; Bešlo, D; Brkić, H; Karačić, Z; Lisjak, M; Špoljarević, M; Tomić, S1
Arora, S; Chaturvedi, A; Heuser, M; Joshi, G; Kumar, R; Patil, S1
Wang, H; Wang, Y; Xiao, J; Yang, F; Yuan, Y; Zhao, Y1

Other Studies

12 other study(ies) available for 6-hydroxyflavone and apigenin

ArticleYear
Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.
    Journal of natural products, 1995, Volume: 58, Issue:2

    Topics: DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Electrophoresis, Agar Gel; Flavonoids; Hydroxylation; Plasmids; Protein Conformation; Structure-Activity Relationship; Topoisomerase I Inhibitors; Topoisomerase II Inhibitors

1995
Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA(A) receptor complex.
    Journal of medicinal chemistry, 1999, Oct-21, Volume: 42, Issue:21

    Topics: Animals; Binding Sites; Brain; Flavonoids; In Vitro Techniques; Male; Models, Molecular; Molecular Conformation; Radioligand Assay; Rats; Rats, Wistar; Receptors, GABA-A; Reproducibility of Results; Structure-Activity Relationship

1999
Inhibitors of human and rat testes microsomal 17beta-hydroxysteroid dehydrogenase (17beta-HSD) as potential agents for prostatic cancer.
    Journal of enzyme inhibition, 2001, Volume: 16, Issue:1

    Topics: 17-Hydroxysteroid Dehydrogenases; Androstenedione; Animals; Benzoquinones; Drug Evaluation, Preclinical; Enzyme Inhibitors; Estradiol; Estrone; Flavanones; Flavonoids; Genistein; Humans; Hydrogen-Ion Concentration; Inhibitory Concentration 50; Kinetics; Male; Microsomes; Prostatic Neoplasms; Rats; Structure-Activity Relationship; Testis; Testosterone

2001
Insect antifeedant activity of flavones and chromones against Spodoptera litura.
    Journal of agricultural and food chemistry, 2003, Jan-15, Volume: 51, Issue:2

    Topics: Animals; Chromones; Eating; Flavonoids; Gnaphalium; Insecticides; Methylation; Spodoptera; Structure-Activity Relationship

2003
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
QSAR modeling of the interaction of flavonoids with GABA(A) receptor.
    European journal of medicinal chemistry, 2008, Volume: 43, Issue:8

    Topics: Binding Sites; Flavonoids; Molecular Structure; Protein Binding; Quantitative Structure-Activity Relationship; Receptors, GABA-A

2008
Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay.
    Bioorganic & medicinal chemistry letters, 2009, Aug-15, Volume: 19, Issue:16

    Topics: Androgen Receptor Antagonists; Androgens; Cell Line, Tumor; Flavonoids; Genes, Reporter; Humans; Receptors, Androgen; Receptors, Glucocorticoid; Structure-Activity Relationship

2009
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Multivariate QSAR study on the antimutagenic activity of flavonoids against 3-NFA on Salmonella typhimurium TA98.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:10

    Topics: Algorithms; Antimutagenic Agents; Flavonoids; Fluorenes; Least-Squares Analysis; Models, Biological; Models, Molecular; Mutagens; Quantitative Structure-Activity Relationship; Salmonella typhimurium

2010
Validation of flavonoids as potential dipeptidyl peptidase III inhibitors: Experimental and computational approach.
    Chemical biology & drug design, 2017, Volume: 89, Issue:4

    Topics: Dipeptidyl-Peptidases and Tripeptidyl-Peptidases; Flavonoids; Humans; Hydrophobic and Hydrophilic Interactions; Molecular Dynamics Simulation; Principal Component Analysis; Protease Inhibitors; Quantitative Structure-Activity Relationship

2017
A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Allosteric Regulation; Allosteric Site; Carrier Proteins; Chemistry, Pharmaceutical; Glycolysis; Humans; Membrane Proteins; Protein Kinase Inhibitors; Thyroid Hormone-Binding Proteins; Thyroid Hormones

2022
Influences of glucose on the dietary hydroxyflavonoid-plasma protein interaction.
    Journal of agricultural and food chemistry, 2012, Dec-12, Volume: 60, Issue:49

    Topics: Adult; Apigenin; Binding Sites; Binding, Competitive; Blood Glucose; Blood Proteins; Diet; Dietary Supplements; Flavonoids; Glucose; Humans; Hydrogen Bonding; Kaempferols; Luteolin

2012