6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with gliquidone* in 1 studies
1 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and gliquidone
Article | Year |
---|---|
Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro.
Whole cell recordings of fura-2 dialyzed vagal neurons of brain stem slices were used to monitor interstitial glutamate accumulation within the dorsal vagal complex. Anoxia produced a sustained outward current (60 pA) and a moderate [Ca(2+)](i) rise (40 nM). These responses were neither mimicked by [1S,3R]-1-aminocyclo-pentane-1, 3-dicarboxylic acid nor affected by Ca(2+)-free solution, 6-cyano-7-nitroquino-xaline-2,3-dione (CNQX), 2-amino-5-phosphonovalerate (APV), or tetrodotoxin. Anoxia or cyanide in glucose-free saline (in vitro ischemia) as well as ouabain or iodoacetate elicited an initial anoxia-like [Ca(2+)](i) increase that turned after several minutes into a prominent Ca(2+) transient (0.9 microM) and inward current (-1.8 nA). APV plus CNQX (plus methoxyverapamil) inhibited this inward current as well as accompanying spontaneous synaptic activity, and reduced the secondary [Ca(2+)](i) rise to values similar to those during anoxia. Each of the latter drugs delayed onset of both ischemic current and prominent [Ca(2+)](i) rise by several minutes and attenuated their magnitudes by up to 40%. Ca(2+)-free solution induced a twofold delay of the ischemic inward current and suppressed the prominent Ca(2+) increase but not the initial moderate [Ca(2+)](i) rise. Cyclopiazonic acid or arachidonic acid in Ca(2+)-free saline delayed further the ischemic current, whereas neither inhibitors of glutamate uptake (dihydrokainate, D,L-threo-beta-hydroxyaspartate, L-transpyrrolidone-2,4-dicarboxylate) nor the Cl(-) channel blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid had any effect. In summary, the response to metabolic arrest is due to activation of ionotropic glutamate receptors causing Ca(2+) entry via N-methyl-D-aspartate receptors and voltage-activated Ca(2+) channels. An early Ca(2+)-dependent exocytotic phase of ischemic glutamate release is followed by nonvesicular release, not mediated by reversed glutamate uptake or Cl(-) channels. The results also show that glycolysis prevents glutamate release during anoxia. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Brain Ischemia; Brain Stem; Calcium; Chloride Channels; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Hypoglycemic Agents; Hypoxia, Brain; In Vitro Techniques; Indoles; Male; Neurons; Patch-Clamp Techniques; Rats; Rats, Wistar; Sulfonylurea Compounds; Synaptic Transmission; Tolbutamide; Vagus Nerve | 2000 |