6-cyano-7-nitroquinoxaline-2-3-dione and aniracetam

6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with aniracetam* in 3 studies

Other Studies

3 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and aniracetam

ArticleYear
Activation of muscarinic M3-like receptors and beta-adrenoceptors, but not M2-like muscarinic receptors or alpha-adrenoceptors, directly modulates corticostriatal neurotransmission in vitro.
    Neuroscience, 1999, Volume: 90, Issue:1

    The aim of this study was to characterize the modulation of synaptic transmission in the glutamatergic corticostriatal pathway by cholinergic and adrenergic receptors. In coronal slices of mouse brain, negative-going field potentials were recorded in the dorsal striatum in response to stimulation of the overlying white matter, and their susceptibility to various pharmacological manipulations was studied. The responses were mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, since they were augmented by aniracetam (0.5-1.5 mM), a positive modulator of AMPA-type glutamate receptors, and blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (> or = 10 microM), a selective antagonist of AMPA receptors. Carbachol (10 microM), a muscarinic agonist, reduced the size of responses and abolished paired-pulse depression; these effects being consistent with previous studies indicating that muscarinic activation inhibits release of glutamate in the corticostriatal pathway. Muscarinic antagonists could block the effect of carbachol. Their rank order was: 10 microM scopolamine (a non-selective muscarinic antagonist) > or = 1 microM 4-diphenylacetoxy-N-methyl-piperidine (M3/M1 antagonist)>1 microM pirenzepine (M1 antagonist)>10 microM methoctramine (M2 antagonist). McN-A-343 (1-10 microM), an M1 muscarinic agonist, was ineffective in this preparation. In contrast, isoproterenol (10-30 microM), a beta-adrenergic agonist, slightly increased the synaptic responses, but it did not affect paired-pulse depression. None of alpha-adrenergic agents (30 nM-1.0 microM dexmedetomidine, an alpha2-adrenergic agonist, 0.3 microM atipamezole, an alpha2-adrenergic antagonist or 30 microM phenylephrine, an alpha1-adrenergic agonist) influenced the size of the responses; neither did these drugs alter paired-pulse depression. These results indicate that the activation of striatal M3-like muscarinic receptors and beta-adrenoceptors, but not M2-like muscarinic receptors and alpha-adrenoceptors, modulates directly corticostriatal glutamatergic neurotransmission.

    Topics: (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic beta-Agonists; Adrenergic Fibers; Animals; Carbachol; Cerebral Cortex; Cholinergic Fibers; Corpus Striatum; Diamines; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Imidazoles; Isoproterenol; Male; Medetomidine; Mice; Mice, Inbred DBA; Muscarinic Agonists; Muscarinic Antagonists; Phenylephrine; Piperidines; Pirenzepine; Pyrrolidinones; Receptor, Muscarinic M2; Receptor, Muscarinic M3; Receptors, Adrenergic, alpha; Receptors, Adrenergic, beta; Receptors, AMPA; Receptors, Muscarinic; Scopolamine; Synaptic Transmission

1999
Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam.
    Neuroscience research, 1991, Volume: 12, Issue:1

    Excitatory synaptic connections between rat hippocampal neurons were established in tissue culture. The electrophysiological and pharmacological properties of these synapses were studied with the use of the tight-seal whole-cell recording technique. The excitatory postsynaptic current (EPSC) in a dissociated CA1 neuron evoked by stimulation of an explant from the CA3/CA4 region of the hippocampus had two distinct components in Mg(2+)-free medium. The fast component was abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (2 microM), whereas the slow component was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (D-APV) (50 microM). In solution containing 1 mM Mg2+, the peak amplitude of the fast component was almost linearly related to the membrane potential. In contrast, the conductance change underlying the slow component of the EPSC was voltage-dependent with a region of negative-slope conductance in the range of -80 to -20 mV. A nootropic drug, aniracetam, increased both the amplitude and duration of the fast component of the EPSC in a concentration-dependent manner in the range of 0.1-5 mM, whereas it had no potentiating effect on the slow component. Aniracetam (0.1-5 mM) similarly increased current responses of the postsynaptic neuron to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Current responses to quisqualate and glutamate in the presence of D-APV were also potentiated by aniracetam. However, neither NMDA- nor kainate-induced current was potentiated by 1 mM aniracetam.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Embryo, Mammalian; Evoked Potentials; Hippocampus; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Pyramidal Tracts; Pyrrolidinones; Quinoxalines; Quisqualic Acid; Rats; Synapses

1991
Selective effects of aniracetam across receptor types and forms of synaptic facilitation in hippocampus.
    Hippocampus, 1991, Volume: 1, Issue:4

    Aniracetam reversibly increased synaptic responses mediated by the AMPA but not the NMDA subclass of glutamate receptors in hippocampus and was considerably more potent than structurally similar nootropics. The drug had greater effects on field excitatory postsynaptic potentials (EPSPs) in the dentate gyrus and CA1 region than it did in the CA3 region, suggesting that it differentiates between variants of the AMPA receptor. Ligand binding to glutamate receptors in synaptosomal membrane fractions was minimally changed by aniracetam. Finally, the percent facilitation produced by aniracetam in the CA1 region was not reduced by any of three treatments (4-aminopyridine, changes in extracellular calcium concentrations, paired-pulse stimulation) that affect release but, in accord with a previous report, was substantially decreased by long-term potentiation. These results support the conclusion that aniracetam selectively increases the conductance of a subgroup of synaptic AMPA receptors in hippocampus and suggest that receptor changes underlie the expression of long-term potentiation.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Hippocampus; Hydroxybenzoate Ethers; Hydroxybenzoates; Long-Term Potentiation; Pyrrolidines; Pyrrolidinones; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Structure-Activity Relationship; Synaptic Transmission

1991