6-cyano-7-nitroquinoxaline-2-3-dione and 3-aminocyclopentane-1-carboxylic-acid

6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with 3-aminocyclopentane-1-carboxylic-acid* in 4 studies

Other Studies

4 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and 3-aminocyclopentane-1-carboxylic-acid

ArticleYear
Regulation of N-methyl-D-aspartate-induced toxicity in the neostriatum: a role for metabotropic glutamate receptors?
    Proceedings of the National Academy of Sciences of the United States of America, 1996, Feb-06, Volume: 93, Issue:3

    Glutamate release activates multiple receptors that interact with each other and thus determine the response of the cell. Exploring these interactions is critical to developing an understanding of the functional consequences of synaptic transmission. Activation of metabotropic glutamate receptors (mGluRs) inhibits N-methyl-D-aspartate (NMDA)-evoked responses measured electrophysiologically in neostriatal slices. The present study examines the functional consequences of this regulation using infrared differential interference contrast videomicroscopy to measure and characterize glutamate receptor-induced cell swelling in a neostriatal brain slice preparation. This swelling is, in many cases, a prelude to necrotic cell death and the dye trypan blue was used to confirm that swelling can result in the death of neostriatal cells. Activation of mGluRs by the agonist 1-aminocyclopentane-1,3-dicarboxylic acid (tACPD) inhibited NMDA but not amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-induced swelling. This regulation was cell-type specific as tACPD did not alter NMDA-induced swelling in pyramidal cells of the hippocampus. Importantly, these findings could be extended to in vivo preparations. Pretreatment with tACPD limited the size of lesions and associated behavioral deficits induced by intrastriatal administration of the NMDA receptor agonist quinolinic acid.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Apomorphine; Cyclopentanes; GABA Agonists; Hippocampus; In Vitro Techniques; Kainic Acid; Male; Microscopy, Video; Motor Activity; N-Methylaspartate; Neostriatum; Neurotoxins; Quinolinic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Reference Values

1996
Glutamate-stimulated phosphatidylinositol metabolism in the avian cochlear nucleus.
    Neuroscience letters, 1994, Feb-28, Volume: 168, Issue:1-2

    This study examined the ability of the excitatory amino acid glutamate and its analogs to stimulate phosphatidylinositol metabolism in isolated cochlear nucleus tissue from young chicks. In the presence of lithium chloride, glutamate and (+/-)-1-aminocyclopentyl-trans-1,3-dicarboxylate (ACPD) stimulated the formation of inositol phosphates to levels significantly above unstimulated control levels. Unexpectedly, quisqualate did not stimulate inositol phosphates formation. The N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV), the ionotropic kainate/quisqualate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the putative metabotropic glutamate receptor antagonist 2-amino-3-phosphonopropionate (AP3) had no effect on the glutamate stimulated formation of inositol phosphates. We conclude that a metabotropic glutamate receptor is present on cochlear nucleus neurons of posthatch chicks and is able to stimulate formation of inositol phosphates.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Chickens; Cochlear Nucleus; Cyclopentanes; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; In Vitro Techniques; Inositol Phosphates; Lithium Chloride; Phosphatidylinositols; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate

1994
Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures.
    Journal of neurochemistry, 1993, Volume: 61, Issue:5

    Recent studies have identified at least two homologous mitogen-activated protein (MAP) kinases that are activated by phosphorylation of both tyrosine and threonine residues by an activator kinase. To help define the role of these MAP kinases in neuronal signalling, we have used primary cultures derived from fetal rat cortex to assess the regulation of their activity by agonist stimulation of glutamate receptors and by synaptic activity. Regulation was assayed by monitoring changes in both tyrosine phosphorylation on western blots and in vitro kinase activity toward a selective MAP kinase substrate peptide. In initial studies, we found that phorbol ester treatment increased tyrosine phosphorylation of p42 MAP kinase and stimulated MAP kinase activity. A similar response was elicited by three agonists of metabotropic glutamate receptors, i.e., trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid, quisqualate, and (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine. MAP kinase activity and p42 MAP kinase tyrosine phosphorylation were also stimulated by the ionotropic glutamate receptor agonist, kainate, but not by N-methyl-D-aspartate. To examine regulation of MAP kinase by synaptic activity, cultures were treated with picrotoxin, an inhibitor of GABAA receptor-mediated inhibition that enhances spontaneous excitatory synaptic activity. Treatment of cultures with picrotoxin elicited activation of MAP kinase. This response was blocked by tetrodotoxin, which suppresses synaptic activity. These results demonstrate that p42 MAP kinase is activated by glutamate receptor agonist stimulation and by endogenous synaptic activity.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adenosine Triphosphate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acid Sequence; Animals; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Cerebral Cortex; Cyclopentanes; Cytosol; Enzyme Activation; Fetus; Molecular Sequence Data; Neurons; Oligopeptides; Phorbol 12,13-Dibutyrate; Picrotoxin; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Substrate Specificity; Synapses

1993
Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex.
    Proceedings of the National Academy of Sciences of the United States of America, 1993, Apr-15, Volume: 90, Issue:8

    Long-term depression (LTD) is held relevant to memory and learning. Its induction is known to require postsynaptic calcium increases. However, the source of these calcium increases remains unclear. In visual cortex slices, LTD was induced by tetanization after blockade of N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors. LTD induced under this condition was prevented by an intracellular injection of each of the following drugs into the postsynaptic neuron: (i) guanosine 5'-[beta-thio]diphosphate, which competitively inhibits the binding of GTP to GTP-binding regulatory proteins; (ii) heparin, which antagonizes 1,4,5-inositol triphosphate binding; and (iii) calcium chelators. Moreover, LTD was induced without tetanization by applying quisqualate (10 microM), a metabotropic glutamate receptor agonist, but not another agonist, trans-aminocyclopentane-1,3-dicarboxylic acid (10 microM). Together, these results suggest that activation of 1,4,5-inositol trisphosphate-linked subtypes of metabotropic glutamate receptor is responsible for the increase in postsynaptic calcium concentration, which results in homosynaptic LTD.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Bicuculline; Cyclopentanes; Evoked Potentials; gamma-Aminobutyric Acid; Guanosine Diphosphate; Heparin; In Vitro Techniques; Kinetics; Neuronal Plasticity; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Synapses; Thionucleotides; Visual Cortex

1993