6-cyano-7-nitroquinoxaline-2-3-dione and 2-amino-7-phosphonoheptanoic-acid

6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with 2-amino-7-phosphonoheptanoic-acid* in 32 studies

Other Studies

32 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and 2-amino-7-phosphonoheptanoic-acid

ArticleYear
Substance P and glutamate receptor antagonists improve the anti-arthritic actions of dexamethasone in rats.
    British journal of pharmacology, 2010, Volume: 159, Issue:4

    Current single drug treatments for rheumatoid arthritis have problems of limited efficacy and/or high toxicity. This study investigates the benefits of individual and combined treatments with dexamethasone and substance P and glutamate receptor antagonists in a rat model of arthritis.. Arthritis was induced in rats by unilateral intra-articular injection of Freund's complete adjuvant. Separate groups of rats were subjected to the following treatments 15 min before induction of arthritis: (i) control with no drug treatment; (ii) single intra-articular injection of a NK(1) receptor antagonist RP67580; (iii) single intra-articular injection of a NMDA receptor antagonist AP7 plus a non-NMDA receptor antagonist CNQX; (iv) daily oral dexamethasone; and (v) combined treatment with dexamethasone and all of the above receptor antagonists. Knee joint allodynia, swelling, hyperaemia and histological changes were examined over a period of 7 days.. Treatment with dexamethasone suppressed joint swelling, hyperaemia and histological changes that include polymorphonuclear cell infiltration, synovial tissue proliferation and cartilage erosion in the arthritic rat knees. Treatment with RP67580 or AP7 plus CNQX did not attenuate hyperaemia or histological changes, but reduced joint allodynia and swelling. Co-administration of dexamethasone with these receptor antagonists produced greater inhibition on joint allodynia and swelling than their individual effects.. The data suggest substance P and glutamate contribute to arthritic pain and joint swelling. The efficacy of dexamethasone in reducing arthritic pain and joint swelling can be improved by co-administration of substance P and glutamate receptor antagonists.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Dexamethasone; Drug Interactions; Drug Therapy, Combination; Excitatory Amino Acid Antagonists; Freund's Adjuvant; Glutamic Acid; Injections, Intra-Articular; Isoindoles; Knee Joint; Neurokinin-1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, Neurokinin-1; Substance P; Time Factors

2010
Differential effects of glutamate receptor antagonists on dorsal horn neurons responding to colorectal distension in a neonatal colon irritation rat model.
    World journal of gastroenterology, 2005, Nov-07, Volume: 11, Issue:41

    To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX), two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).. Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001, 0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 micromoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.. (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20, 40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dose-dependent manner; (3) In control rats, CNQX (2 micromoL) had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 micromoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 micromoL) significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.. Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Catheterization; Colon; Disease Models, Animal; Excitatory Amino Acid Antagonists; Irritable Bowel Syndrome; Male; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Glutamate

2005
Intracellular calcium reduces light-induced excitatory post-synaptic responses in salamander retinal ganglion cells.
    The Journal of physiology, 2001, Apr-01, Volume: 532, Issue:Pt 1

    The whole-cell patch clamp technique was used to study the effect of intracellular Ca2+ on light-evoked EPSCs in on-off ganglion cells in salamander retinal slices. Both AMPA and NMDA receptors contributed to the light-evoked responses. In the presence of strychnine and picrotoxin, ganglion cells responded to light onset and offset with transient inward currents at -70 mV. These currents were reduced by 35 +/- 3 % when the light stimulus was preceded by a depolarizing step from -70 to 0 mV. The inhibitory effect of depolarization on light-evoked EPSCs was strongly reduced in the presence of 10 mM BAPTA. The degree of EPSC inhibition by the prepulse holding potential followed the current-voltage relationship of the Ca2+ current found in the ganglion cell. In the presence of the NMDA receptor antagonist AP-7, glutamate-dependent current was nearly abolished when high Ca2+ was substituted for high Na+ solution. The release of Ca2+ from internal stores by caffeine or inositol trisphosphate reduced the EPSCs by 36 +/- 5 and 38 +/- 11 %, respectively, and abolished the inhibitory effect of depolarization. The inhibitory effect of depolarization on EPSCs was reduced 5-fold in the presence of AP-7, but was not reduced by the AMPA receptor antagonist CNQX. Neither inhibition of Ca2+-calmodulin-dependent enzymes, nor inhibition of protein kinase A or C had any significant effect on the depolarization-induced inhibition of EPSCs. Our data suggest that elevation of [Ca2+]i, through voltage-gated channels or by release from intracellular stores, reduced primarily the NMDA component of the light-evoked EPSCs.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Ambystoma; Animals; Caffeine; Calcium; Central Nervous System Stimulants; Chelating Agents; Egtazic Acid; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Ion Channels; Light; Patch-Clamp Techniques; Protein Kinase Inhibitors; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Retinal Ganglion Cells; Sodium

2001
NMDA or non-NMDA receptor antagonists attenuate increased Fos expression in spinal dorsal horn GABAergic neurons after intradermal injection of capsaicin in rats.
    Neuroscience, 2001, Volume: 106, Issue:1

    GABAergic neurons play an important role in the generation of primary afferent depolarization, which results in presynaptic inhibition and, if large enough, triggers dorsal root reflexes. Recent electrophysiological studies by our group have suggested that increased excitation of spinal GABAergic neurons by activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors following intradermal injection of capsaicin results in the generation of DRRs that contribute to neurogenic inflammation. The present study was to determine if changes in the expression of Fos protein occur in GABAergic neurons in the lumbosacral spinal cord following injection of capsaicin into the glabrous skin of one hind paw of anesthetized rats and if pretreatment with an NMDA receptor antagonist, D-(-)-2-amino-7-phosphonoheptanoic acid (AP7) or a non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocks Fos expression in these neurons. The experiments used western blots and immunofluorescence double labeling staining following capsaicin or vehicle injection. Western blots showed that Fos protein was increased on the ipsilateral side in spinal cord tissue 0.5 h after capsaicin injection. Pretreatment with AP7 or CNQX caused a decrease in capsaicin-induced Fos expression. Immunofluorescence double labeling showed that the proportion of Fos-positive GABAergic neuronal profiles was significantly increased following capsaicin injection (48.8+/-4.8%) compared to the vehicle injection (23.8+/-5.1%) in superficial laminae on the ipsilateral side in lumbosacral spinal cord (P<0.05). However, when the spinal cord was pretreated with AP7 (5 microg) or CNQX (0.2 microg), only 9.1+/-0.6% or 7.1+/-0.8% of GABA-immunoreactive neuronal profiles were stained for Fos following capsaicin injection. The blockade of the capsaicin-evoked Fos staining was dose-dependent. These findings suggest that GABAergic neurons take part in dorsal horn circuits that modulate nociceptive information and that the function of GABAergic neurons following capsaicin injection is partially mediated by NMDA and non-NMDA receptors.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Blotting, Western; Capsaicin; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fluorescent Antibody Technique; Functional Laterality; gamma-Aminobutyric Acid; Inflammation; Injections, Intradermal; Interneurons; Male; Membrane Potentials; Neural Conduction; Neural Inhibition; Nociceptors; Pain; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Up-Regulation

2001
Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells.
    Journal of neurophysiology, 1998, Volume: 80, Issue:3

    Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs) were identified and characterized with whole cell and perforated patch voltage-clamp recordings in adult mouse retinal ganglion cells. Pharmacological dissection revealed that all cells were driven by spontaneous synaptic inputs mediated by glutamate and gamma-aminobutyric acid-A (GABAA) receptors. One-half (7/14) of the cells also received glycinergic spontaneous synaptic inputs. Both GABAA and glycine receptor-mediated sIPSCs had rise times (10-90%) of < 1 ms. The decay times of the GABAA receptor-mediated sIPSCs were comparable with those of the glycine receptor-mediated sIPSCs. The average decay time constant for monoexponentially fitted sIPSCs was 63.2 +/- 74.1 ms (mean +/- SD, n = 3278). Glutamate receptor-mediated sEPSCs had an average rise time of 0.50 +/- 0.20 ms (n = 109) and an average monoexponential decay time constant of 5.9 +/- 8.6 ms (n = 2705). Slightly more than two-thirds of the spontaneous synaptic events were monoexponential (68% for sIPSCs and 76% for sEPSCs). The remainder of the events was biexponential. The amplitudes of the spontaneous synaptic events were not correlated with rise times, suggesting that the electrotonic filtering properties of the neurons and/or differences in the spatial location of synaptic inputs could not account for the difference between the decay time constants of the glutamate and GABAA/glycine receptor-mediated spontaneous synaptic events. The amplitudes of sEPSCs were similar to those recorded in tetrodotoxin (TTX), consistent with the events measured in control saline being the response to the release of a single quantum of transmitter. The range of the sIPSC amplitudes in control saline was wider than that recorded in TTX, consistent with some sIPSCs being evoked by presynaptic spikes having an average quantal size greater than one. The rates of sIPSCs and sEPSCs were determined under equivalent conditions by recording with perforated patch electrodes at potentials at which both types of event could be identified. Two groups of ganglion cell were observed; one group had an average sEPSCs/sIPSCs frequency ratio of 0.96 +/- 0.77 (n = 28) and another group had an average ratio of 6.63 +/- 0.82 (n = 7). These findings suggest that a subset of cells is driven much more strongly by excitatory synaptic inputs. We propose that this subset of cells could be OFF ganglion cells, consistent with the higher frequency of spontaneous act

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Age Factors; Animals; Bicuculline; Cadmium; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glycine Agents; Kinetics; Mice; Mice, Inbred C57BL; Neural Inhibition; Reaction Time; Receptors, GABA-A; Receptors, Glycine; Retinal Ganglion Cells; Strychnine; Synaptic Transmission; Tetrodotoxin; Virulence Factors, Bordetella

1998
Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists.
    Pain, 1998, Volume: 77, Issue:2

    In this study, we sought to characterize the effects of focal GABA(A) receptor antagonism on spontaneous and evoked activity in dorsal horn neurons of the alpha-chloralose anesthetized cat. Bicuculline (0.5, 1.0 mM) applied near the neurons through a transparenchymal dialysis fiber resulted in increased evoked activity in nociceptive dorsal horn neurons. Hair deflection was the stimulus most affected, followed by both low and high threshold tonic mechanical stimulation of the receptive field. In addition, neurons displayed increased background discharge and a subpopulation developed an increased afterdischarge to noxious mechanical stimulation. This is in contrast to our previous work with glycine receptor antagonism where only the evoked response to hair follicle activation was significantly enhanced. Subsequent co-administration of an NMDA receptor antagonist (AP-7, 2.0 mM) was without any apparent effect on either basal or bicuculline-enhanced responses. Co-administration of a non-NMDA excitatory amino acid receptor antagonist (CNQX, 1.0 mM) with the bicuculline non-selectively blocked both low and high threshold mechanical input. The inability of AP-7 to reverse the bicuculline-associated hyperreactivity also contrasts with the AP-7 reversal of the strychnine-associated hyperreactivity. These results point out that, while GABA and glycine are frequently co-localized in cells of the spinal dorsal horn and both appear to mediate tonic inhibitory control systems, they are not at all equivalent and are subject to different modulatory pharmacologies. Removal of each influence may model a different component of neuropathic pain.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Blood Pressure; Cats; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Glycine Agents; Microdialysis; Neuralgia; Neurons, Afferent; Nociceptors; Pain Threshold; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Stimulation, Chemical; Strychnine

1998
Spinal muscarinic, glutamatergic and GABAergic receptor systems in cardiovascular regulation.
    The Journal of pharmacology and experimental therapeutics, 1997, Volume: 281, Issue:1

    The central administration of cholinergic agonists can produce a significant increase in arterial blood pressure by enhancing sympathetic vasomotor tone. The stimulation of spinal muscarinic receptors through intrathecal (i.t.) injection of carbachol in rats evoked a significant pressor response that returned to preinjection levels within 30 to 40 min. We investigated the roles of glutamatergic and GABAergic receptors in mediating the hypertensive response to i.t. injection of the muscarinic receptor agonist carbachol and in the maintenance of resting blood pressure and heart rate. The i.t. pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonists D-AP7 or MK801 maleate (dizocilipine) attenuated the pressor response to i.t. administration carbachol in a dose-dependent manner in conscious, freely moving rats. In contrast, i.t. pretreatment with 6-cyano-7-nitroquinoxaline-2,3-dione, a non-NMDA glutamate receptor antagonist, was not effective in this regard, indicating that the carbachol-evoked pressor response was not mediated through the quisqualate/kainate subtype of glutamate receptors. The i.t. pretreatment with the gamma-aminobutyric acid type B receptor agonist baclofen also inhibited the pressor response to i.t. injection of carbachol at doses that did not alter motor function. To determine whether the pressor response to stimulation of spinal muscarinic receptors required the participation of higher centers, rats received an intracisternal injection of either methylatropine or D-AP7 before the i.t. injection of carbachol. Both intracisternal pretreatments significantly reduced the expression of the pressor response to i.t. injection of carbachol. These findings are consistent with the presence of a powerful modulating spinobulbar muscarinic pressor system. Pharmacological activation of this system involves the participation of spinal and perhaps medullary glutamate-NMDA and gamma-aminobutyric acid type B receptor systems.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Atropine; Baclofen; Blood Pressure; Carbachol; Dizocilpine Maleate; Heart Rate; Male; Rats; Rats, Wistar; Receptors, GABA; Receptors, Glutamate; Receptors, Muscarinic; Spinal Cord

1997
Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats.
    European journal of pharmacology, 1997, Apr-18, Volume: 324, Issue:2-3

    The involvement of excitatory amino acid receptors in peripheral nociceptive processing was assessed in two separate experiments. In the first, one knee joint cavity of rats was injected with 0.1 ml of L-glutamate (0.001 mM; 0.1 mM; 1.0 mM), L-aspartate (0.001 mM; 0.1 mM: 1.0 mM), L-arginine (0.1 mM) or different combinations of these amino acids. The animals tested for paw withdrawal latency to radiant heat and withdrawal threshold to von Frey filaments at different time points. Combinations of glutamate/aspartate, aspartate/arginine or glutamate/aspartate/arginine when injected into the joint, in the absence of any other treatment, reduced the paw withdrawal latency and withdrawal threshold immediately after the injection and persisting up to 5 h indicating the development of hyperalgesia and allodynia. Subsequent intra-articular injection of either an NMDA or a non-NMDA glutamate receptor antagonist ((+/-)-2-amino-7-phosphonoheptanoic acid (AP7), 0.2 mM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 0.1 mM) attenuated the thermal hyperalgesia and the mechanical allodynia produced by glutamate/aspartate/arginine. On the other hand, in a second experiment intra-articular injection of AP7, ketamine or CNQX reversed the hyperalgesia and allodynia produced by injection of a mixture of kaolin and carrageenan into the joint. These receptor antagonists, however, did not have an effect on the joint edema. These findings provide evidence for a potential role of peripheral NMDA and non-NMDA receptors in nociceptive transmission.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Hyperalgesia; Injections, Intra-Articular; Knee Joint; Male; Pain; Rats; Rats, Sprague-Dawley; Reaction Time; Synaptic Transmission

1997
Excitatory amino acid antagonists in the rostral ventromedial medulla inhibit mesencephalic morphine analgesia in rats.
    Pain, 1996, Volume: 64, Issue:3

    Supraspinal opioid analgesia is mediated in part by connections between the periaqueductal gray (PAG) and rostral ventromedial medulla (RVM). Morphine analgesia elicited from the PAG is respectively decreased by selective serotonergic and opioid receptor antagonists administered into the RVM, and increased by RVM neurotensin antagonists. Since glutamate and excitatory amino acid (EAA) receptors are also active in the RVM, the present study evaluated whether either competitive (AP7) or non-competitive (MK-801) N-methyl-D-aspartate (NMDA) antagonists or a kainate/AMPA (CNQX) antagonist microinjected into the RVM altered morphine (2.5 micrograms) analgesia elicited from the PAG as measured by the tail-flick and jump tests. Mesencephalic morphine analgesia was markedly reduced on both tests after RVM pretreatment with either AP7 (0.01-1 microgram, 0.08-7.8 nmol) or MK-801 (0.03-3 micrograms, 0.04-4.4 nmol). In contrast, small but significant reductions in mesencephalic morphine analgesia occurred on the jump test following CNQX (0.5 microgram, 2.2 nmol) in the RVM. NMDA antagonists did not markedly alter either basal nociceptive thresholds following RVM administration, or mesencephalic morphine analgesia following administration into medullary placements lateral or dorsal to the RVM. These data implicate EAA and particularly NMDA receptors in the RVM in modulating the transmission of opioid pain-inhibitory signals from the PAG.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Analgesics, Opioid; Animals; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Injections; Male; Medulla Oblongata; Mesencephalon; Morphine; Pain Measurement; Pain Threshold; Periaqueductal Gray; Rats; Rats, Sprague-Dawley

1996
NMDA receptors are involved at the ventrolateral nucleus tractus solitarii for termination of inspiration.
    European journal of pharmacology, 1995, Apr-24, Volume: 277, Issue:2-3

    The purpose of the present study was to determine whether blockade of excitatory amino acid receptors at the ventrolateral nucleus of the tractus solitarius would influence respiratory activity. This was done by microinjecting excitatory amino acid receptor antagonists into the ventrolateral nucleus of the tractus solitarius of alpha-chloralose-anesthetized animals while monitoring respiratory activity using a Fleisch pneumotachograph and arterial blood pressure and heart rate. Bilateral microinjection of the NMDA receptor antagonist, 3-[(R)-carboxypiperazin-4-yl]-propyl-1- phosphomic acid (CPP), 5.62 nmol per side, produced an increase in inspiratory duration (+4 +/- 1.6 s, n = 8) which progressed to an apneustic pattern of breathing. Similar results were obtained with CPP microinjected into the ventrolateral nucleus of the tractus solitarius of three vagotomized animals. Bilateral microinjection of a second NMDA receptor antagonist, 2-amino-7-phosphono-heptanoic acid (AP7), 562 nmol per side, produced qualitatively similar effects on respiration as seen with CPP. In contrast, blockade of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNXQ), 0.125 nmol per side, had very little effect on respiration. Activation of NMDA receptors at the ventrolateral nucleus of the tractus solitarius with bilateral microinjection of NMDA, 39 pmol, produced a large increase in expiratory duration (+11 +/- 3 s, n = 8), and apnea during the expiratory phase of the respiratory cycle in half of the animals studied. Similar results were obtained with D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazol-proprionate (AMPA). These results indicate that an endogenous excitatory amino acid released at the ventrolateral nucleus of the tractus solitarius and acting at the NMDA receptor, plays a significant role in respiratory timing.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Apnea; Blood Pressure; Cats; Female; Heart Rate; Male; Microinjections; N-Methylaspartate; Piperazines; Pulmonary Ventilation; Receptors, N-Methyl-D-Aspartate; Respiration; Solitary Nucleus; Vagotomy

1995
Thalamocortical and corticocortical excitatory postsynaptic potentials mediated by excitatory amino acid receptors in the cat motor cortex in vivo.
    Neuroscience, 1995, Volume: 64, Issue:2

    Intracellular recordings were made from neurons in the motor cortex of an anaesthetized cat, together with iontophoretic application of excitatory amino acid receptor agonists and antagonists, in order to evaluate the role of such receptors in excitatory postsynaptic potentials evoked from stimulation of afferent and recurrent pathways in vivo. Excitatory postsynaptic potentials which were evoked by stimulation of the ventrolateral thalamus were found to be largely insensitive to antagonism by N-methyl-D-aspartate receptor antagonists, although they were susceptible to blockade by the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione. Increasing the ventrolateral thalamus stimulation frequency from 0.5 or 1 to 5 Hz caused an increase of evoked excitatory postsynaptic potential amplitudes and number of action potentials. These augmented excitatory postsynaptic potentials remained insensitive to application of N-methyl-D-aspartate antagonists. In contrast, recurrent excitatory postsynaptic potentials evoked by stimulation of the pyramidal tract were found to be sensitive to N-methyl-D-aspartate receptor antagonists and/or non-N-methyl-D-aspartate receptor antagonists in some neurons. These results demonstrate the involvement of both N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptors in synaptic responses of cat motor cortex neurons in vivo, and that the synaptic pharmacology of the thalamic input may differ from that of the local recurrent pathways.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cats; Electric Stimulation; Electrophysiology; Evoked Potentials; Female; Male; Motor Cortex; Piperazines; Pyramidal Tracts; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Thalamus

1995
Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice.
    Brain research, 1995, Feb-06, Volume: 671, Issue:1

    The behavioural and convulsant effects of imipenem (Imi), a carbapenem derivative, were studied after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration in DBA/2 mice, a strain genetically susceptible to sound-induced seizures. The anticonvulsant effects of some excitatory amino acid antagonists and muscimol (Msc), a GABAA agonist, against seizures induced by i.p. or i.c.v. administration of Imi were also evaluated. The present study demonstrated that the order of anticonvulsant activity in our epileptic model, after i.p. administration, was (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)-cyclohepten-5,10-imine maleate (MK-801) > (+/-)(E)-2-amino-4-methyl-5-phosphono-3-pentenoate ethyl ester (CGP 39551) > 3-((+/-)-2-carboxypiperazin-4-yl)propenyl-1-phosphonic acid (CPPene) > 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CCP) > 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX). Ifenprodil, a compound acting on the polyamine site of NMDA receptor complex was unable to protect against seizures induced by Imi, suggesting that the poliamine site did not exert a principal role in the genesis of seizures induced by Imi. In addition, the order of anticonvulsant potency in our epileptic model, after i.c.v. administration, was CPPene > MK-801 > Msc > (-)-2-amino-7-phosphonic acid (AP7) > gamma-D-glutamylaminomethylsulphonate (gamma-D-GAMS) > NBQX > kynurenic acid (KYNA) > 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). The relationship between the different site of action and the anticonvulsant activity of these derivatives was discussed. Although the main mechanism of Imi induced seizures cannot be easily determined, potential interactions with the receptors of the excitatory amino acid neurotransmitters exists. In fact, antagonists of excitatory amino acids are able to increase the threshold for the seizures or to prevent the seizures induced by Imi. In addition, Imi acts on the central nervous system by inhibition of GABA neurotransmission and Msc, a selective GABAA agonist, was able to protect against seizures induced by Imi.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Dizocilpine Maleate; Excitatory Amino Acids; Glutamine; Imipenem; Kynurenic Acid; Mice; Mice, Inbred DBA; Muscimol; Piperazines; Piperidines; Quinoxalines; Seizures

1995
Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.
    Proceedings of the National Academy of Sciences of the United States of America, 1994, Jun-21, Volume: 91, Issue:13

    The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of NG-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while NG-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adenosine; Amino Acid Oxidoreductases; Amino Acids; Animals; Anticonvulsants; Arginine; Carbon Dioxide; Cerebellar Cortex; Cerebrovascular Circulation; Drug Interactions; Electric Stimulation; Isomerism; Magnesium; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Regional Blood Flow; Tetrodotoxin

1994
Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on spinal release of amino acids after development of acute arthritis in rats.
    Brain research, 1994, Nov-21, Volume: 664, Issue:1-2

    Following induction of acute knee joint arthritis in rats, an increase in the release of amino acids in the spinal dorsal horn occurs in two phases: (1) at the time of injection for all amino acids tested; and (2) a late prolonged phase for aspartate (Asp) and glutamate (Glu) (3.5-8 h). In the present study, the increased late phase release of Glu was reversed by posttreatment of the spinal cord with the N-methyl-D-aspartate (NMDA) receptor antagonist, AP7, but not with the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Asp late phase release in arthritic animals was unaffected by posttreatment of the spinal cord with either AP7 or CNQX. Arthritic animals became hyperalgesic to radiant heat stimuli by 4 h and this hyperalgesia was reversed by both CNQX and AP7. During the paw withdrawal latency (PWL) test for heat hyperalgesia, there was an increase in the glycine (Gly) and serine (Ser) concentrations in the dorsal horn. This increase in Gly and Ser was blocked by both CNQX and AP7. Indications of inflammation in arthritic animals posttreated with AP7, including increased joint circumference and temperature, were similar to animals that did not receive antagonists. Arthritic animals posttreated with CNQX, however, showed a reduction in the degree of joint swelling. Thus, both non-NMDA and NMDA receptors appear to play a role in the processing of the information evoked by stimuli in the periphery. The arthritis-induced release of Gly and Ser during the PWL test for heat hyperalgesia appears to be dependent on activation of both non-NMDA and NMDA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Acute Disease; Amino Acids; Analysis of Variance; Animals; Arthritis; Excitatory Amino Acids; Joints; Male; Microdialysis; Pain Measurement; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, N-Methyl-D-Aspartate; Spinal Cord

1994
Release of 3H-noradrenaline by excitatory amino acids from rat mediobasal hypothalamus and the influence of aging.
    Brain research bulletin, 1994, Volume: 33, Issue:6

    The present study was designed to analyze the effects of glutamate (GLU) and its agonists on the release of noradrenaline (NA) from the mediobasal region of rat hypothalamus (MBH). Slices from hypothalamus were loaded in vitro with 3H-NA and thereafter exposed to GLU and the glutamate agonists N-methyl-D-aspartic acid (NMDA) and kainate (KA), in superfusion chambers. GLU evoked a significant 3H-NA release in a concentration-dependent manner. The EC50 was 35 mM. 6-Cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a non-NMDA selective antagonist, and amino-7-phosphonoheptanoic acid (AP 7), a NMDA selective antagonist, both decreased the GLU-evoked response to about 50% of its value. NMDA, superfused in Mg(2+)-free Krebs-Ringer, exhibited a greater potency than GLU with an EC50 = 124 microM. KA was also able to evoke 3H-NA release, although overall responses to KA were lower than those of NMDA. The maximal response to KA was a 36% increase of release at a concentration of 200 microM. The effect of KA was blunted by CNQX. NMDA-induced 3H-NA release was progressively altered with age. In old rats (16-18 months) and middle-aged rats (10 months), responses to 200 microM NMDA were decreased respect to young (4 months) male rats. These results show that NMDA and KA receptors mediate the excitatory effects of GLU on NA release from nerve terminals in the MBH and suggest that GLU, in association with NA, participates in the complex mechanisms that regulate neuroendocrine functions.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Amino Acids; Animals; Glutamates; Glutamic Acid; Hypothalamus, Middle; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Norepinephrine; Quinoxalines; Rats; Tritium

1994
Activation of alpha-adrenoceptors indirectly facilitates sodium pumping in frog motoneurons.
    Brain research, 1993, Dec-10, Volume: 630, Issue:1-2

    The effects of clonidine on Na+ pumping in motoneurons of the isolated frog spinal cord was investigated using sucrose gap recordings from ventral roots. Na+ pump activity, induced in motoneurons either by tetanizing the dorsal root or by rapidly exposing the cord to normal medium following 30 min in K(+)-free Ringer's solution (K(+)-activated hyperpolarizations), was increased by application of clonidine (100 microM). These actions of clonidine were blocked by the preferential alpha 2-adrenergic antagonist yohimbine, but not by alpha 1-adrenergic antagonist prazosin or the beta-blocker propranolol. Clonidine's effects on Na+ pumping appeared to be indirect (presumably via interneurons) because its effects on K(+)-activated hyperpolarizations were reduced by tetrodotoxin (TTX) or high concentrations of Mg2+. This indirect mechanism involved activation of non-NMDA excitatory amino acid receptors. Thus, in the presence of clonidine, CNQX, but not APH, limited the ability of clonidine to enhance K(+)-activated hyperpolarizations. The AMPA receptor may play a role in the process, K(+)-activated hyperpolarizations were augmented by the presence of AMPA; NMDA had no effect. The present results are consistent with the idea that activation of alpha 2-adrenoceptors produces the following: the release of excitatory amino acids from interneurons; the activation of non-NMDA receptors on motoneurons; increased Na+ influx and loading and increased Na+ pump activity.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Clonidine; Motor Neurons; N-Methylaspartate; Norepinephrine; Prazosin; Propranolol; Quinoxalines; Rana pipiens; Sodium-Potassium-Exchanging ATPase; Spinal Cord; Tetrodotoxin

1993
Spinal cord amino acid release and content in an arthritis model: the effects of pretreatment with non-NMDA, NMDA, and NK1 receptor antagonists.
    Brain research, 1993, Nov-05, Volume: 627, Issue:1

    An experimental arthritis, induced by injection of the knee joint with kaolin and carrageenan, results in guarding of and decreased weight bearing on the limb. At the time of injection, a transient increased release of all amino acids examined is measurable in samples collected by microdialysis. A second and prolonged increase of aspartate (ASP), glutamate (GLU), and glutamine (GLN) concentrations follows after 3 h. The increased release at time of injection is blocked by microdialysis application of a non-N-methyl-D-aspartate (non-NMDA) or an NMDA receptor antagonist, and the release of ASP, GLU, and GLN in the late phase is blocked by pretreatment with a non-NMDA (CNQX), an NMDA (AP7) or a neurokinin 1 (NK1; CP-96,345) antagonist. Dorsal horn immunoreactive staining of GLU, substance P (SP), and calcitonin gene-related peptide (CGRP) is reflective of the events occurring in the late phase of amino acid release since GLU release is positively correlated with GLU staining density. Increased immunoreactivity for GLU, SP, and CGRP at 8 hr in the arthritic animals is differentially altered by pretreatment of the spinal cord dorsal horn with non-NMDA, NMDA, or NK1 receptor antagonists. The differential staining pattern for GLU, SP, and CGRP, the differential release of ASP and GLU, and the differential activation of the EAA and NK1 receptors implies that ASP, GLU, SP, and CGRP are each involved in the processing of sensory information and that their roles in the central sensitization occurring with the inflammatory process, are unique.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Arthritis; Biphenyl Compounds; Disease Models, Animal; Glutamates; Glutamic Acid; Immunohistochemistry; Lidocaine; Male; Microdialysis; Neurokinin-1 Receptor Antagonists; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spinal Cord

1993
Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors.
    Lancet (London, England), 1993, Jan-30, Volume: 341, Issue:8840

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons. Glutamate, a potent central-nervous-system toxin, has been proposed as one possible factor in this motoneuron disease. Serum from patients with ALS is known to be toxic when added to neurons in culture. We report on the toxicity to rat neurons in culture of cerebrospinal fluid (CSF) from patients with ALS. CSF were obtained from 10 ALS patients, 10 neurological controls, and 10 other controls. ALS CSF was added at dilutions of 50%, 20%, or 10% and neuron survival was assessed after 24 h. The neuroprotective effects of antagonists to two glutamate receptors were also assessed. ALS CSF was significantly neurotoxic, with a neuronal survival rate of only 47% compared with 80% or so for control CSF. This neurotoxicity was blocked by CNQX, an antagonist to the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor but not by two N-methyl-D-aspartate (NMDA) antagonists. ALS CSF contains a specific neurotoxic factor which is AMPA/kainate-like which could have a role in the neuronal degeneration of this disease.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Aged; Amino Acids; Amyotrophic Lateral Sclerosis; Animals; Cell Survival; Cells, Cultured; Dizocilpine Maleate; Dose-Response Relationship, Drug; Humans; Middle Aged; Motor Neurons; Nerve Degeneration; Quinoxalines; Rats; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid

1993
Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex.
    Journal of neurophysiology, 1993, Volume: 69, Issue:1

    1. In vitro slices of frontal neocortex were prepared from rat pups 3-14 days of age. Whole-cell patch-clamp recordings were obtained from layer II-III cortical neurons, and measurements of passive membrane properties were made. The development of evoked synaptic excitation and inhibition was also examined with the use of current- and voltage-clamp techniques. 2. Pharmacological separation of excitatory synaptic activity into both N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated components was accomplished by application of D(-)2-amino-5-phosphonovaleric acid (APV), D(-)2-amino-7-phosphonoheptanoic acid (AP7), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Inhibitory synaptic events were described according to their reversal potentials and modulation by the GABAA receptor antagonist bicuculline methiodide (BMI). 3. Pups were grouped into three categories on the basis of age: postnatal day (PN) 3-5, PN 6-8, and PN 9-14. In slices from PN 3-5 pups, neurons exhibited high input resistances (Rn) and relatively low resting membrane potentials (RMP). Rns decreased, and RMPs became more negative with development. At all ages studied, current-voltage relationships measured in current clamp were relatively linear, with inward rectification observed in some neurons at hyperpolarized membrane potentials. Neurons in each group were capable of firing overshooting action potentials. 4. Local stimulation in layer IV-V at 0.033 Hz elicited depolarizing excitatory postsynaptic potentials (EPSPs) in neurons from all three age groups. In PN 3-5 neurons, EPSPs were characterized by a long duration and latency to peak. By PN 6-8, EPSPs had decreased significantly in both duration and latency-to-peak. Some neurons responded with a single-component EPSP, whereas others exhibited multicomponent EPSPs consisting of distinct early and late components. In PN 3-5 neurons, increasing the frequency of stimulation from 0.033 to 1 Hz resulted in an overall decrease in the amplitude of the entire EPSP, whereas in PN 6-8 neurons the main decrease was observed in the late EPSP. 5. Excitatory postsynaptic currents (EPSCs) recorded in both PN 3-5 and PN 6-8 neurons were shorter in duration than corresponding EPSPs and consisted of both early and late components. Early EPSCs routinely increased in amplitude with hyperpolarization at all ages. In PN 3-5 neurons, the voltage dependence of late EPSCs was variable. By PN 6-8, late EPSCs always exhibited a region of reduced amplitude f

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Animals, Newborn; Cell Differentiation; Electric Stimulation; Frontal Lobe; Membrane Potentials; Neural Inhibition; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission

1993
An experimental arthritis model in rats: the effects of NMDA and non-NMDA antagonists on aspartate and glutamate release in the dorsal horn.
    Neuroscience letters, 1993, Jan-04, Volume: 149, Issue:1

    Release of excitatory amino acids (EAA's) in the dorsal horn of awake rats was monitored by microdialysis during the development of arthritis induced by injection of 3% kaolin and 3% carrageenan into the knee joint. Concentrations of EAA's in the dialysate samples were measured by high performance liquid chromatography at baseline, during delivery of EAA antagonists, and for the first 8 h of arthritis. An initial increase in aspartate (ASP) and glutamate (GLU) was observed on injection of the knee joint in rats made arthritic. Subsequently, there was a prolonged release phase after 3 h which persisted at least 8 h. Specific EAA antagonists to non-N-methyl-D-aspartate (non-NMDA; CNQX) and to NMDA (AP7) receptors were used to block the effects seen in the untreated arthritic animals. The increase in ASP and GLU release seen at the time of injection in untreated arthritic animals did not occur in arthritic animals treated with EAA receptor antagonists (CNQX or AP7). In arthritic animals treated with CNQX, the prolonged release phase was delayed and attenuated for GLU and decreased below baseline for ASP. In the AP7-treated arthritic animals, no change from baseline concentration was observed for ASP until 7 h, and GLU decreased minimally. The data indicate that this arthritis model is accompanied by an initial increased release of EAA's at the time of injection which is dependent on the activation of both non-NMDA and NMDA receptors. Subsequent development of arthritis, manifested as an inflamed joint and a delayed and prolonged release of ASP and GLU, is dependent on the initial activation of these EAA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Arthritis; Aspartic Acid; Carrageenan; Glutamates; Glutamic Acid; Injections, Intra-Articular; Kaolin; Knee Joint; Male; N-Methylaspartate; Quinoxalines; Rats; Rats, Sprague-Dawley; Spinal Cord

1993
Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex.
    Proceedings of the National Academy of Sciences of the United States of America, 1993, Apr-15, Volume: 90, Issue:8

    Long-term depression (LTD) is held relevant to memory and learning. Its induction is known to require postsynaptic calcium increases. However, the source of these calcium increases remains unclear. In visual cortex slices, LTD was induced by tetanization after blockade of N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors. LTD induced under this condition was prevented by an intracellular injection of each of the following drugs into the postsynaptic neuron: (i) guanosine 5'-[beta-thio]diphosphate, which competitively inhibits the binding of GTP to GTP-binding regulatory proteins; (ii) heparin, which antagonizes 1,4,5-inositol triphosphate binding; and (iii) calcium chelators. Moreover, LTD was induced without tetanization by applying quisqualate (10 microM), a metabotropic glutamate receptor agonist, but not another agonist, trans-aminocyclopentane-1,3-dicarboxylic acid (10 microM). Together, these results suggest that activation of 1,4,5-inositol trisphosphate-linked subtypes of metabotropic glutamate receptor is responsible for the increase in postsynaptic calcium concentration, which results in homosynaptic LTD.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Bicuculline; Cyclopentanes; Evoked Potentials; gamma-Aminobutyric Acid; Guanosine Diphosphate; Heparin; In Vitro Techniques; Kinetics; Neuronal Plasticity; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Synapses; Thionucleotides; Visual Cortex

1993
The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells.
    Neuron, 1993, Volume: 11, Issue:4

    To examine how light-evoked excitatory synaptic inputs to retinal ganglion cells are transformed into output patterns of activity, action potentials were recorded with cell-attached patch-clamp techniques, and then EPSCs and EPSPs were recorded from the same cell in the whole-cell configuration. AP7, an NMDA antagonist, reduced the light-evoked peak spike frequency 36% +/- 21% (mean +/- SD) and reduced the EPSC amplitude, indicating a major role for NMDA receptors in the light response. CNQX, a non-NMDA receptor antagonist, reduced the light-evoked peak spike frequency 28% +/- 22%. CNQX also caused a voltage- and magnesium-dependent delay in spike onset. AP7 and CNQX, however, did not differ significantly in their effect on the EPSC time course, indicating that postsynaptic cellular properties are responsible for the delay observed in the presence of CNQX. These results show that the NMDA receptor contribution to the excitatory response is increased as the cell is depolarized from rest by non-NMDA input.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Ambystoma; Amino Acids; Animals; Darkness; Electrophysiology; Evoked Potentials; Excitatory Amino Acid Antagonists; In Vitro Techniques; Light; Magnesium; Mathematics; Models, Neurological; Photic Stimulation; Quinoxalines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Retinal Ganglion Cells; Synapses

1993
Suppression of a calcium current by CNQX and kynurenate.
    Neuroscience letters, 1992, Dec-07, Volume: 147, Issue:2

    During our investigation of a sustained high voltage-activated (HVA) calcium current in retinal horizontal cells, we found that the glutamate receptor antagonists CNQX and kynurenate but not AP7 reversibly reduced the peak amplitude of the HVA current. Changes in the HVA current kinetics or activation voltage were not apparent; there was only a reduction in the peak current. The novel effects of these antagonists on HVA calcium currents reported here could have an impact on many studies involving glutamatergic synaptic transmission.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Anticonvulsants; Calcium Channel Blockers; Cells, Cultured; Electrophysiology; Excitatory Amino Acid Antagonists; Ibotenic Acid; Ictaluridae; Kynurenic Acid; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Retina

1992
The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1992, Volume: 12, Issue:8

    The role of excitatory amino acids (EAAs) in the excitation of monkey spinothalamic tract (STT) neurons following activation of cutaneous primary afferent fibers by noxious and non-noxious stimuli was investigated. The responses of STT neurons to either NMDA or non-NMDA EAA ligands were blocked by infusion of specific antagonists through a microdialysis fiber into the region surrounding the cells. Our results show that blockade of non-NMDA receptors results in a nearly complete elimination of the responses of STT neurons to all stimuli. Blockade of NMDA receptors results in an attenuation of the responses to noxious stimuli but, in addition, prevents the development of the sensitization of STT neurons that is often observed after intradermal injection of capsaicin. These observations further support a role of EAAs in the transmission of sensory information from primary afferent fibers to dorsal horn neurons and a role for NMDA receptors in the generation of hyperalgesia.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Capsaicin; Electric Stimulation; Electrophysiology; Female; Hot Temperature; Macaca fascicularis; Neurons; Physical Stimulation; Pregnancy; Quinoxalines; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Spinal Nerve Roots; Spinothalamic Tracts; Stimulation, Chemical

1992
Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray.
    Brain research, 1992, May-22, Volume: 581, Issue:1

    The present study tested the hypothesis that the pathway from the medial hypothalamus to the midbrain periaqueductal gray (PAG) subserving defensive rage behavior in the cat facilitates the occurrence of this response when elicited from the PAG by utilizing excitatory amino acids as a neurotransmitter or neuromodulator. Cannula electrodes were implanted into the PAG for the elicitation of defensive rage behavior as well as for microinjections of excitatory amino acid antagonists and N-methyl-D-aspartic acid (NMDA). Monopolar stimulating electrodes were also implanted into the medial hypothalamus from which this response could also be elicited and, when stimulated at subthreshold levels for elicitation of behavior, could also facilitate the occurrence of PAG elicited defensive rage. Initially, dual stimulation of the PAG and medial hypothalamus facilitated the occurrence of defensive rage elicited from the PAG. Then, the identical dual stimulation paradigm was repeated with the same current parameters following the infusion of various antagonists for different receptors into the PAG defensive rage sites. The results indicate that infusion of either kynurenic acid [(0.1-2.0 nmol), a non-selective excitatory amino acid receptor antagonist] or D-2-amino-7-phosphonoheptanoic acid (AP7) [(0.1-2.0 nmol), a specific NMDA receptor antagonist], produced a dose and time dependent blockade of the facilitatory effects of medial hypothalamic stimulation. In contrast, microinjections of relatively larger doses of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) [(4 nmol), a non-NMDA receptor (quisqualate and kainate) antagonist] or atropine [(4.4 nmol), a muscarinic receptor antagonist] had little effect upon medial hypothalamically elicited facilitation of the PAG response. In a second experiment, NMDA [0.1-1.0 nmol] was microinjected directly into PAG defensive rage sites in the absence of medial hypothalamic stimulation. In these animals, drug infusion mimicked the effects of dual stimulation by producing a dose and time dependent decrease in response latencies. A third experiment was designed to further test the hypothesis by neuroanatomical methods. Here, the retrograde label, Fluoro-Gold, was microinjected into defensive rage sites within the PAG and following a survival time of 5-6 days, the animals were sacrificed. The brains were then processed for immunocytochemical analysis of cells that immunoreact positively for aspartate and glutamate. The results indicated the

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Atropine; Cats; Female; Hypothalamus, Middle; Immunohistochemistry; Kynurenic Acid; Male; Microinjections; N-Methylaspartate; Neurotransmitter Agents; Periaqueductal Gray; Quinoxalines; Rage; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate

1992
Two types of glutamate receptors differentially excite amacrine cells in the tiger salamander retina.
    The Journal of physiology, 1992, Volume: 449

    1. Excitatory inputs to amacrine cells in the salamander retinal slice preparation were examined using whole-cell patch pipette voltage-clamp techniques. In strychnine (500 nM) and bicuculline (100 microM), two types of amacrine cell were easily distinguished by their light-evoked excitatory responses: transient and sustained. 2. In transient amacrine cells the current-voltage (I-V) relation for the peak light-evoked current was non-linear with a negative slope region between -50 and -70 mV. Responses reversed near +10 mV and were prolonged at more positive holding potentials. 3. In DL-2-amino-phosphonoheptanoate (AP7, 30 microM), a selective N-methyl-D-aspartate (NMDA) receptor antagonist, both the negatively sloped region of the light I-V relation and the prolongation of the response at positive potentials were eliminated. In 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2 microM), a selective non-NMDA receptor antagonist, light-evoked currents at the most hyperpolarized holding potentials were eliminated. At potentials positive to -85 mV the light-evoked currents lacked a fast onset. The light I-V relation in CNQX had a negative slope region between -35 and -80 mV. 4. With synaptic transmission blocked, kainate evoked responses in transient cells with a resultant I-V relation that was nearly linear, whereas glutamate and NMDA elicited responses with non-linear I-V relations. 5. Light-evoked currents in sustained amacrine cells had a nearly linear I-V relation and reversed near +10 mV. AP7 at a concentration of 30 microM did not affect the light-evoked currents in sustained cells, but 2 microM-CNQX eliminated all light-evoked currents in these cells. 6. With synaptic transmission blocked, sustained amacrine cells responded only to glutamate and kainate, not NMDA. The resultant I-V relations were linear. 7. We conclude that the light-evoked responses of transient amacrine cells are mediated by concomitant activation of both non-NMDA and NMDA receptors whereas the responses of sustained amacrine cells are mediated only by non-NMDA receptors. Furthermore, these data provide supportive evidence that the primary light-evoked excitatory neurotransmitter activating amacrine cells is glutamate.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Evoked Potentials, Visual; Photic Stimulation; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Retina; Urodela

1992
Quisqualic acid-induced neurotoxicity is protected by NMDA and non-NMDA receptor antagonists.
    Neuroscience letters, 1992, Aug-31, Volume: 143, Issue:1-2

    Quisqualic acid-mediated excitotoxicity has been attributed essentially to the activation of non-N-methyl-D-aspartate (non-NMDA) receptors. In the present study we demonstrate the possible involvement of both NMDA and non-NMDA receptors in quisqualic acid-induced toxicity in mouse brain slices, in vitro. Incubation of mouse brain sagittal slices with various concentrations of quisqualic acid resulted in significant increase in the leakage of lactate dehydrogenase and potassium from the slices into the medium. Prior incubation of mouse brain slices with NMDA (MK-801 or AP7) or non-NMDA receptor antagonists (GDEE or quinoxalinediones) protected against quisqualic acid-mediated toxicity. Slices prepared from animals pretreated in vivo with MK-801 (5 mg/kg b.wt.) were also resistant to the toxic effects of quisqualic acid, indicating the possible involvement of NMDA receptors in quisqualic acid toxicity.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ion Channel Gating; L-Lactate Dehydrogenase; Mice; Potassium; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate

1992
Responses to repetitive afferent activity of rat solitary complex neurons isolated in brainstem slices.
    Neuroscience letters, 1992, Nov-23, Volume: 147, Issue:1

    The response of postsynaptic solitary complex neurons to repetitive stimulation (20-50 Hz) of the tractus solitarius were investigated by intracellular recordings in a brainstem slice preparation. Short duration stimuli (0.5 s) elicited increases in synaptic activity and short-term potentiation of synaptic potentials, both of which lasted approximately 1 min, plus a 10 s repolarization suppressed in the presence of glutamate ionotropic receptors antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and 2-D-amino-7-phosphonoheptanoic acid (AP7, 50 microM). Longer (5 s) stimuli elicited 2-10 min depolarizations accompanied by membrane resistance increases and unaffected by glutamate ionotropic receptors antagonists. Our study reveals several mechanisms by which rhythmic visceral afferents may exert a tonic control of postsynaptic solitary complex neurons.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Brain Stem; Electric Stimulation; In Vitro Techniques; Medulla Oblongata; Membrane Potentials; Neuronal Plasticity; Neurons, Afferent; Quinoxalines; Rats; Synapses; Synaptic Transmission

1992
Terminal excitability of the corticostriatal pathway. II. Regulation by glutamate receptor stimulation.
    Brain research, 1991, Jun-14, Volume: 551, Issue:1-2

    The influence of impulse activity and glutamate receptor stimulation on the electrical excitability of the corticostriatal terminal field was explored. Antidromic responses were recorded from prefrontal cortical neurons the electrical stimulation of their terminal field in the contralateral striatum. Terminal excitability was assessed by determining the percentage of subthreshold current stimulus presentations eliciting an antidromic response. Terminal excitability was found to be positively correlated with variations in spontaneous firing rate: increases and decreases in firing rate were accompanied by corresponding changes in the percentage of antidromic responses elicited by a subthreshold stimulus. Drugs were applied to the striatal stimulation site in a volume of 312 nl delivered over 5 min. Striatal administration of either the competitive NMDA antagonist D-alpha-aminoadipate (DAA) or D-2-amino-7-phosphonoheptanoate (AP-7) or the competitive non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) blocked the correlation between excitability and firing rate. Further examination revealed that the terminal field was rendered more excitable for a period of 20-80 ms following the arrival of an action potential. This post-impulse facilitation of terminal excitability was attenuated after local application of AP-7 (10 microM) or CNQX (20 microM). At half these doses, AP-7 or CNQX produced a non-significant effect, however when administered simultaneously a significant attenuation was observed. The participation of interneurons in these excitability effects was ruled out since they were still seen following kainic acid lesions. We propose that this impulse-dependent enhancement in terminal excitability results from the release of glutamate induced by the action potential in the terminal field and the subsequent stimulation of glutamate autoreceptors on the terminals.

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cerebral Cortex; Corpus Striatum; Electrophysiology; Glutamates; Kainic Acid; Male; Nerve Endings; Neurons; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1991
A possible role of AA2 excitatory amino acid receptors in the expression of stimulant drug effects.
    Psychopharmacology, 1990, Volume: 101, Issue:4

    GDEE, an antagonist of the AA2 or quisqualic acid category of excitatory amino acid receptor, decreases behavioral activity and locomotor stimulation induced by cocaine and amphetamine when locally injected into the nucleus accumbens. The present experiment was intended to examine the effects of systemic GDEE and other excitatory amino acid antagonists on stimulant-induced locomotor activity. GDEE markedly attenuated the stimulant effect of amphetamine, and partially blocked the effects of phencyclidine (PCP). Apomorphine-induced cage climbing behavior was partially decreased by lower dosages of GDEE, but was almost completely blocked by the highest dosage tested. Amphetamine-induced stimulation of locomotor activity was not decreased by any of the other excitatory amino acid antagonists that were tested, including MK-801, 2-amino-7-phosphonoheptanoic acid (APH), or CNQX. APH decreased stereotypy only at a high dosage (250 mg/kg), which also produces ataxia. Several other compounds, including L-glutamic acid gamma ethyl ester (GMEE), L-glutamic acid, glycine, and L-glutamine did not block amphetamine-induced stimulation in molar dosages equivalent to the highest dosage of GDEE (8 mmol/kg). It is concluded that the AA2 excitatory amino acid receptor is important in the expression of activating effects of stimulant drugs.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Amphetamine; Animals; Apomorphine; Behavior, Animal; Central Nervous System Stimulants; Dibenzocycloheptenes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Glutamates; Mice; Motor Activity; Phencyclidine; Quinoxalines; Receptors, Amino Acid; Receptors, Cell Surface; Stereotyped Behavior

1990
The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex.
    Journal of neurophysiology, 1990, Volume: 64, Issue:5

    1. A study was made of the relative contribution of N-methyl-D-aspartate (NMDA) and non-NMDA receptors to the visual responses of cells in different layers of the cat visual cortex at different levels of excitatory drive (which was varied by altering the stimulus contrast). 2. Receptive fields were mapped for 121 cells in area 17 of cat cortex. Cells were characterized to determine the optimal visual stimulus, the brightness of which was then varied relative to background luminance to construct a contrast-response (C-R) curve for each cell. Curves were made during control conditions and during application of agonists (NMDA and quisqualate) and/or antagonists [(D)-2-amino-5-phosphonovaleric acid (D-APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] to examine the excitatory amino acid components of the visual response. 3. Threshold responses were obtained with stimuli between 1/60 and 1.8 X background luminance. The cell response, measured by firing rate, was linearly related to stimulus contrast over 1-2 decades and saturated at higher contrasts. 4. Application of APV reduced the slope of the linear portion of the C-R curve for cells located in layers II and III (average reduction, 59% of control). APV did not decrease the threshold to stimulation. The "just suprathreshold" responses to stimulation were reduced by the same proportion as the saturation responses for individual cells. The principal effect was therefore to reduce the gain of the C-R curve in these layers. 5. Application of APV reduced the spontaneous activity of cells located in layers IV, V, and VI with little if any effect on the gain of the C-R curve. This suggests a tonic background level of NMDA-receptor activation in these layers, which is not directly related to the visual response. 6. Low levels of NMDA increased the gain of the C-R curve in layers II/III and V/VI. On the other hand, low levels of quisqualate increased the overall level of firing without affecting the gain of the C-R curve. NMDA did not increase the gain of the curve in layer IV. 7. These experiments show that visual stimuli that produce just suprathreshold responses activate NMDA receptors. The degree of activation is proportionally the same for small responses and large responses for an individual cell. Rather than finding a threshold for NMDA-receptor activation, a continuous range of NMDA-receptor influence was observed over the entire response range.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cats; Electric Stimulation; Electrodes; Hippocampus; Iontophoresis; Neurons; Photic Stimulation; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Visual Cortex

1990
The glutamate-mediated release of dopamine in the rat striatum: further characterization of the dual excitatory-inhibitory function.
    Neuroscience, 1990, Volume: 39, Issue:2

    A push-pull cannula supplied with an artificial cerebrospinal fluid containing the tritiated precursor of dopamine, [3H]tyrosine, was implanted in the caudate nucleus of rats anesthetized with halothane. The extracellular dopamine and dihydroxyphenylacetic acid were measured in successive 20 min fractions (both in their tritiated and unlabeled form) and the ratio between the two forms calculated. Glutamate was added to the superfusing cerebrospinal fluid to investigate its role in the process of dopamine release. The release of dopamine and the efflux of dihydroxyphenylacetic acid were activated by a low concentration (10(-8) M) of glutamate. In contrast, a higher concentration (10(-4) M) of the amino acid reduced the release of dopamine. These results first confirmed the presence of a dual mechanism of control, by glutamate, of the dopamine release in the striatum depending on the extracellular concentration. Secondly, these treatments affected the dihydroxyphenylacetic acid amount and predominantly the tritiated form of dopamine, suggesting that the glutamate induces an important increase of the amine synthesis, in spite of a moderate effect on the release. The reversal of the inhibition by applications of tetrodotoxin (5 x 10(-7) M) and bicuculline (10(-4) M) confirmed that it was mediated by an indirect mechanism involving a GABAergic neurotransmission. In addition, the increase of the spontaneous dopamine release during bicuculline application suggested the existence of a tonic mechanism of inhibition of dopamine release in the striatum. This was confirmed by the fact that local xylocaine-induced anesthesia of the sensory motor cortex increased the spontaneous release of dopamine in the striatum.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; 3,4-Dihydroxyphenylacetic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Bicuculline; Caudate Nucleus; Corpus Striatum; Dopamine; Glutamates; Glutamic Acid; Kinetics; Quinoxalines; Rats; Rats, Inbred Strains; Reference Values; Tetrodotoxin; Tritium; Tyrosine

1990