6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline* in 63 studies
2 review(s) available for 6-cyano-7-nitroquinoxaline-2-3-dione and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
Article | Year |
---|---|
[AMPA receptor].
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amyotrophic Lateral Sclerosis; Animals; Drug Design; Humans; Quinoxalines; Receptors, AMPA | 2008 |
The pharmacology of AMPA receptors and their antagonists.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Quinoxalines; Receptors, AMPA | 1993 |
61 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
Article | Year |
---|---|
Pre- and post-synaptic functions of kainate receptors at glutamate and GABA synapses in the rat entorhinal cortex.
Oscillatory network activity in cortical areas is seen as vital to physiological processes of cognition, learning, and memory, and fundamental to disorders such as epilepsy. Increasing attention is being paid to the role of kainate receptors (KAr) in the generation of network oscillations and synchrony. The entorhinal cortex (EC) plays a key role in learning and memory, and is a major site of dysfunction in temporal lobe epilepsy. KAr have been implicated in oscillogenesis in the EC, but limited information is available concerning the physiological roles of KAr in synaptic transmission in this area. Here, we make a detailed analysis of KAr function in Layer III of the EC, a site known to be highly susceptible to oscillogenesis, using whole-cell patch clamp recording of evoked and spontaneous synaptic currents in rat brain slices. We demonstrate that KAr containing the GluK1-subunit act as facilitatory autoreceptors at glutamatergic synapses on pyramidal neurones in Layer III. In addition, GluK1-containing KAr mediate an excitatory drive at glutamatergic synapses on GABAergic interneurones. In contrast, a different KAr, which is likely to contain the GluK2-subunit mediates a slow postsynaptic excitation at glutamatergic synapses on principal neurones, and may also act as a heteroreceptor, facilitating GABA release at inhibitory terminals on principal neurones. Reducing [Mg(2+) ](o) , which we have previously shown can generate KAr-dependent slow network oscillations in Layer III, enhances both glutamate and GABA release. Both effects are partly sustained by increased activation of GluK1-containing KAr. Increased activation of the GluK1-containing autoreceptor also results in an enhancement of the postsynaptic response mediated by GluK2-containing receptors. Finally, spontaneous release of both transmitters shows a rhythmic periodicity in low-Mg, and, again, this is dependent on GluK1-containing KAr. The results show that KAr contribute a facilitatory function at multiple levels in the networks of the EC, and provide a basis for dissecting the role of these receptors in oscillogenesis in this area. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Entorhinal Cortex; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Male; Nerve Net; Neural Inhibition; Neurons; Quinoxalines; Rats; Rats, Wistar; Receptors, Kainic Acid; Synapses; Synaptic Transmission | 2012 |
Encoding of the cough reflex in anesthetized guinea pigs.
We have previously described the physiological and morphological properties of the cough receptors and their sites of termination in the airways and centrally in the nucleus tractus solitarius (nTS). In the present study, we have addressed the hypothesis that the primary central synapses of the cough receptors subserve an essential role in the encoding of cough. We found that cough requires sustained, high-frequency (≥8-Hz) afferent nerve activation. We also found evidence for processes that both facilitate (summation, sensitization) and inhibit the initiation of cough. Sensitization of cough occurs with repetitive subthreshold activation of the cough receptors or by coincident activation of C-fibers and/or nTS neurokinin receptor activation. Desensitization of cough evoked by repetitive and/or continuous afferent nerve activation has a rapid onset (<60 s) and does not differentiate between tussive stimuli, suggesting a central nervous system-dependent process. The cough reflex can also be actively inhibited upon activation of other airway afferent nerve subtypes, including slowly adapting receptors and pulmonary C-fibers. The sensitization and desensitization of cough are likely attributable to the prominent, primary, and unique role of N-methyl-d-aspartate receptor-dependent signaling at the central synapses of the cough receptors. These attributes may have direct relevance to the presentation of cough in disease and for the effectiveness of antitussive therapies. Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Anesthesia; Animals; Biphenyl Compounds; Citric Acid; Cough; Dose-Response Relationship, Drug; Electric Stimulation; GABA-A Receptor Antagonists; GABA-B Receptor Agonists; gamma-Aminobutyric Acid; Guinea Pigs; Male; Mechanoreceptors; Propionates; Quinoxalines; Receptors, GABA; Receptors, N-Methyl-D-Aspartate; Recurrent Laryngeal Nerve; Reflex; Respiratory Mucosa; Sensory Receptor Cells; Solitary Nucleus; Substance P; Trachea; Vagus Nerve; Valine | 2011 |
Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation.
Synaptic AMPA receptors are greatly influenced by a family of transmembrane AMPA receptor regulatory proteins (TARPs) which control trafficking, channel gating and pharmacology. The prototypical TARP, stargazin (or γ2), shifts the blocking ability of several AMPAR-selective compounds including the commonly used quinoxalinedione antagonists, CNQX and NBQX. Stargazin's effect on CNQX is particularly intriguing as it not only apparently lowers the potency of block, as with NBQX, but also renders it a partial agonist. Given this, agonist behaviour by CNQX has been speculated to account for its weaker blocking effect on AMPAR-TARP complexes. Here we show that this is not the case. The apparent effect of stargazin on CNQX antagonism can be almost entirely explained by an increase in the apparent affinity for l-glutamate (l-Glu), a full agonist and neurotransmitter at AMPAR synapses. Partial agonism at best plays a minor role but not through channel gating per se but rather because CNQX elicits AMPAR desensitization. Our study reveals that CNQX is best thought of as a non-competitive antagonist at glutamatergic synapses due to the predominance of non-equilibrium conditions. Consequently, CNQX primarily reports the proportion of AMPARs available for activation but may also impose additional block by receptor desensitization. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Calcium Channels; Cell Line; Excitatory Amino Acid Antagonists; Glutamic Acid; Humans; Quinoxalines; Receptors, AMPA | 2011 |
Reduced expression of the "fast" calcium transporter PMCA2a during homeostatic plasticity.
In a model of homeostatic plasticity, hippocampal slice culture CA3 pyramidal neurons responded to excitatory synapse inactivity by enhancing glutamate release through an increased number of miniature excitatory post-synaptic currents, mEPSCs and excitatory pre-synaptic terminals. Also accompanying these changes was a specific reduction in the expression of a "fast" calcium transporter, the plasma membrane calcium ATPase, PMCA2a. This transporter normally influences glutamate release from excitatory terminals where it helps control calcium levels. The reduction in PMCA2a expression occurred within 2 days of synapse inactivity; it was specific and reversible in young and mature hippocampal slice cultures and required removal of NMDA receptor mediated activity. Furthermore, the enhanced mEPSCs in the model were resistant to pharmacological inhibition of PMCA transporter activity. Reduced expression of PMCA2a during homeostatic plasticity therefore provides a mechanism to remodel pre-synaptic Ca2+ dynamics as a flexible way to alter glutamate release. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Down-Regulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Homeostasis; Neuronal Plasticity; Plasma Membrane Calcium-Transporting ATPases; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Synapses | 2009 |
Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex.
Dark neurons have plagued the interpretation of brain tissue sections, experimentally and clinically. Seen only when perturbed but living tissue is fixed in aldehydes, their mechanism of production is unknown. Since dark neurons are seen in cortical biopsies, experimental ischemia, hypoglycemia, and epilepsy, we surmised that glutamate release and neuronal transmembrane ion fluxes could be the perturbation leading to dark neuron formation while the fixation process is underway. Accordingly, we excised biopsies of rat cortex to simulate neurosurgical production of dark neurons. To ascertain the role of glutamate, blockade of N-methyl-D-aspartate (NMDA) and non-NMDA receptors was done prior to formaldehyde fixation. To assess the role of transmembrane sodium ion (and implicitly, water) fluxes, tetraethylammonium (TEA) was used. Blockade of NMDA receptors with MK-801 and non-NMDA receptors with the quinoxalinediones (CNQX and NBQX) abolished dark neuron formation. More delayed exposure of the tissue to the antagonist, CNQX, by admixing it with the fixative directly, allowed for some production of dark neurons. Aminophosphonoheptanoate (APH), perhaps due to its polarity, and TEA, did not prevent dark neurons, which were abundant in control formaldehyde fixed material unexposed to either receptor or ion channel antagonists. The results demonstrate a role for the pharmacologic subtypes of glutamate receptors in the pathogenetic mechanism of dark neuron formation. Our results are consistent with the appearance of dark neurons in biopsy where the cerebral cortex has been undercut, and rendered locally ischemic and hypoglycemic, as well as in epilepsy, hypoglycemia, and ischemia, all of which lead to glutamate release. Rather than a pressure-derived mechanical origin, we suggest that depolarization, glutamate release or receptor activation are more likely mechanisms of dark neuron production. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Artifacts; Biopsy; Brain Ischemia; Cerebral Cortex; Dizocilpine Maleate; Epilepsy; Excitatory Amino Acid Antagonists; Glutamic Acid; Hypoglycemia; Male; Neurons; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Tetraethylammonium | 2008 |
TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists.
Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs. A crystal structure of CNQX bound to the TARP-less AMPA receptor ligand-binding domain showed that, although CNQX induces partial domain closure, this movement is not transduced into linker separation, suggesting that TARPs may increase agonist efficacy by strengthening the coupling between domain closure and channel opening. Our results demonstrate that the presence of an auxiliary subunit can determine whether a compound functions as an agonist or antagonist. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzodiazepines; Binding, Competitive; Cell Line; Cerebellum; Crystallography, X-Ray; Drug Partial Agonism; Hippocampus; Humans; In Vitro Techniques; Interneurons; Mice; Models, Molecular; Patch-Clamp Techniques; Protein Conformation; Protein Subunits; Pyramidal Cells; Quinoxalines; Receptors, AMPA; Structure-Activity Relationship; Synaptic Transmission; Trichlormethiazide | 2007 |
Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
Glutamate receptor (GluR) ion channels mediate fast synaptic transmission in the mammalian CNS. Numerous crystallographic studies, the majority on the GluR2-subtype AMPA receptor, have revealed the structural basis for binding of subtype-specific agonists. In contrast, because there are far fewer antagonist-bound structures, the mechanisms for antagonist binding are much less well understood, particularly for kainate receptors that exist as multiple subtypes with a distinct biology encoded by the GluR5-7, KA1, and KA2 genes. We describe here high-resolution crystal structures for the GluR5 ligand-binding core complex with UBP302 and UBP310, novel GluR5-selective antagonists. The crystal structures reveal the structural basis for the high selectivity for GluR5 observed in radiolabel displacement assays for the isolated ligand binding cores of the GluR2, GluR5, and GluR6 subunits and during inhibition of glutamate-activated currents in studies on full-length ion channels. The antagonists bind via a novel mechanism and do not form direct contacts with the E723 side chain as occurs in all previously solved AMPA and kainate receptor agonist and antagonist complexes. This results from a hyperextension of the ligand binding core compared with previously solved structures. As a result, in dimer assemblies, there is a 22 A extension of the ion channel linkers in the transition from antagonist- to glutamate-bound forms. This large conformational change is substantially different from that described for AMPA receptors, was not possible to predict from previous work, and suggests that glutamate receptors are capable of much larger movements than previously thought. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Crystallography, X-Ray; Excitatory Amino Acid Antagonists; GluK2 Kainate Receptor; Glutamic Acid; Hydrogen Bonding; Models, Molecular; Oocytes; Patch-Clamp Techniques; Protein Binding; Protein Conformation; Quinoxalines; Rats; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Fusion Proteins; Thymine; Xenopus laevis | 2006 |
Simultaneous AMPA/kainate receptor blockade and dopamine D(2/3) receptor stimulation in the nucleus accumbens decreases brain stimulation reward in rats.
Interactions between dopamine (DA) and glutamate (GLU) in the mesocorticolimbic pathway of the brain may influence motivation and reward. Previous work from this laboratory has demonstrated that alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor blockade may potentiate decreases in exploratory motor activity induced by the DA D(2/3) receptor agonist 7-OH-DPAT in the nucleus accumbens septi (NAS). This study investigated the interaction of AMPA/kainate receptor antagonists CNQX or NBQX with 7-OH-DPAT on ventral tegmental area (VTA) brain stimulation reward (BSR). Effects of these compounds, alone and combined, were measured in male Sprague-Dawley rats stereotaxically implanted with a unilateral VTA electrode and bilateral guide cannulae in the NAS core or shell subregions. Rate-frequency analysis was used to assess BSR frequency thresholds and maximum response rates of rats trained to lever-press for reinforcing electrical stimulation. When given alone, CNQX (0.5 microg), NBQX (0.5 microg), or 7-OH-DPAT (5.0 microg) did not affect BSR frequency thresholds. Co-administration of CNQX or NBQX with 7-OH-DPAT synergistically increased BSR frequency thresholds, indicative of decreased reward. These data indicate that simultaneous AMPA/kainate receptor blockade and DA D(2/3) receptor stimulation in the NAS may act synergistically to inhibit motivated behaviours such as electrical brain self-stimulation. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Behavior, Animal; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Male; Microinjections; Motor Activity; Nucleus Accumbens; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Dopamine D2; Receptors, Kainic Acid; Regression Analysis; Reward; Tetrahydronaphthalenes; Ventral Tegmental Area | 2005 |
In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneously hypertensive rats.
Spontaneously hypertensive rats (SHR) are used as a model for attention-deficit hyperactivity disorder (ADHD) since SHR display the major symptoms of ADHD (hyperactivity, impulsivity, inablity to sustain attention during behavioral tasks). We previously showed that electrical and/or K+-stimulated release of dopamine (DA) from nerve terminals in the prefrontal cortex, nucleus accumbens, and caudate-putamen of SHR was significantly lower than that of Wistar-Kyoto (WKY) control rats. The aim of the present investigation was to determine whether glutamate-stimulated release of DA from nucleus accumbens core and shell of SHR was significantly different from that of WKY. Using an in vitro superfusion technique, we showed that glutamate-stimulated release of [3H]DA from striatal slices is mediated by glutamate activation of AMPA receptors and that glutamate-stimulated release of [3H]DA from nucleus accumbens core and shell of 4-6-week-old SHR and WKY is not significantly different. Glutamate-stimulated release of [3H]DA from SHR shell is significantly lower than SHR core and there is also a tendency for glutamate-stimulated [3H]DA release from SHR shell to be lower than release from WKY shell. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Dopamine; Excitatory Amino Acid Antagonists; Glutamic Acid; Hypertension; In Vitro Techniques; Nucleus Accumbens; Perfusion; Quinoxalines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, AMPA | 2003 |
Inhibition of alpha-subunit glycine receptors by quinoxalines.
Quinoxalines are widely used compounds in electrophysiological studies to separate excitatory and inhibitory neurotransmission mediated by the strychnine-insensitive and strychnine-sensitive glycine receptor (NMDA, GlyR), respectively. We report here, that the quinoxaline NBQX is a potent antagonist of homo-oligomeric alpha1- and alpha2-subunit glycine receptors expressed in Xenopus laevis oocytes. NBQX elicited half-maximal inhibition of glycine evoked currents at a concentration of about 5 microM. DNQX and CNQX were found to be 5-fold and 20-fold less efficient than NBQX. At oocytes expressing alpha1beta2 subunit GABAA receptors the quinoxalines tested showed no significant inhibition of GABA responses up to a concentration of 100 microM. Our data indicates that these quinoxalines applied at concentrations sufficient to block NMDA receptor also attenuate GlyR responses. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Algorithms; Animals; Dose-Response Relationship, Drug; Electrophysiology; GABA-A Receptor Antagonists; Humans; Oocytes; Quinoxalines; Receptors, Glycine; Xenopus laevis | 2003 |
Dual roles in feeding for AMPA/kainate receptors: receptor activation or inactivation within distinct hypothalamic regions elicits feeding behavior.
We have previously shown that hypothalamic injections of glutamate, or agonists of its ionotropic receptors (iGluRs), elicit intense feeding responses in satiated rats [Brain Res. 613 (1993) 88, Brain Res. 630 (1993) 41]. While attempting to clarify the role of the AMPA and kainate (KA) receptor subtypes in glutamatergic feeding systems, we discovered that lateral hypothalamic (LH) injection of high doses of the competitive AMPA/KA receptor antagonist, NBQX (10 and 30 nmol), elicited a pronounced feeding response. We questioned whether this effect was due to inactivation of AMPA or possibly KA receptors. To determine whether other AMPA/KA antagonists can also elicit feeding, we tested whether injection of CNQX, another AMPA/KA receptor antagonist, also stimulates eating and whether these feeding stimulatory effects were due to antagonists' actions in the LH or in other hypothalamic sites. Here we report that NBQX and CNQX elicit feeding in a dose dependent manner and are most effective when injected into the perifornical hypothalamus (PFH), or into the paraventricular nucleus (PVN) and, to a lesser extent, into the LH of satiated rats. In contrast, AMPA was most effective in stimulating feeding when injected into the LH, confirming previous reports. These data suggest that either activation or inactivation of AMPA/KA receptors in distinct but overlapping hypothalamic sites may be sufficient to induce feeding behavior, indicating a broadened role for glutamate in hypothalamic feeding mechanisms. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Dose-Response Relationship, Drug; Feeding Behavior; Glutamic Acid; Hypothalamic Area, Lateral; Hypothalamus; Male; Neural Pathways; Paraventricular Hypothalamic Nucleus; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Kainic Acid; Synaptic Transmission | 2003 |
AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus.
The synaptic mechanisms underlying excitation in the rat's central nucleus of the inferior colliculus (ICC) were examined by making whole-cell patch clamp recordings in brain slice preparations of the auditory midbrain. Responses were elicited by current pulse stimulation of the lateral lemniscus and recordings were made in ICC using either current clamp or voltage clamp methods. The excitatory postsynaptic responses in either current or voltage clamp mode consisted of two distinct components, an early component that could be blocked by bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), and a later component that could be blocked by application of the N-methyl-D-aspartate (NMDA) receptor antagonists, (+/-)-2-amino-5-phosphonovaleric acid (APV) or (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). Both AMPA and NMDA receptor-mediated responses were present at resting potential and could be isolated pharmacologically by application of receptor antagonists. Voltage clamp experiments revealed that the NMDA receptor-mediated current was voltage-dependent and increased in magnitude as the cell membrane was depolarized. This NMDA receptor-mediated response was enhanced at resting potential when Mg(2+) was eliminated from the bath solution. The ratio of response amplitudes associated with the late and early components, an estimate of the relative contribution of NMDA and AMPA receptor types, changed with age. There was a progressive decline in the ratio between 9 and 13 days of age, but no further reduction between days 13 and 16. The data show that both AMPA and NMDA receptors are important for determining excitatory responses in the ICC and that both receptor types probably play a role in auditory processing after the onset of hearing. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Animals; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Inferior Colliculi; Magnesium; Membrane Potentials; Patch-Clamp Techniques; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synapses | 2002 |
AMPA-induced Ca(2+) influx in cultured rat cortical nonpyramidal neurones: pharmacological characterization using fura-2 microfluorimetry.
Immunocytochemical and Co(2+) uptake studies revealed that in primary cultures of rat cortical neurones, the majority of neurones are gamma-aminobutyric acid (GABA) immunopositive and can express Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. By fura-2 microfluorimetry, it was shown that the stimulation with the selective agonist (S)-AMPA (0.3-300 microM) induced a concentration-dependent but cell-variable increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) (EC(50) value 7.4 microM) in more than 80% of the medium-sized multipolar neurones studied. The AMPA-induced rise in [Ca(2+)](i) seems to be due to Ca(2+) entry through AMPA receptor channels, because the response was abolished in Ca(2+)-free solution and by AMPA receptor selective antagonists, but was not significantly influenced by cyclopiazonic acid, an inhibitor of the endoplasmatic Ca(2+)-ATPase, by selective N-methyl-D-aspartic acid (NMDA) receptor antagonists, as well as the Na(+) channel blocker tetrodotoxin and the majority of tested Ca(2+) channel blockers. In conclusion, the results indicate that the cerebral cortical neurones in culture represent mostly GABAergic interneurone-like cells and the majority of them possess Ca(2+)-permeable AMPA receptors, important for intracellular signal transduction and neuronal plasticity. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Benzothiadiazines; Calcium; Cells, Cultured; Cerebral Cortex; Cobalt; Diazoxide; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fluorescence; Fluorometry; Fura-2; gamma-Aminobutyric Acid; Immunohistochemistry; N-Methylaspartate; Neurons; Piperazines; Quinoxalines; Rats; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 2002 |
Ionotropic glutamate receptors mediate juvenile hormone synthesis in the cockroach, Diploptera punctata.
By monitoring changes in the cytosolic [Ca2+](i) and rates of juvenile hormone (JH) synthesis in response to L-glutamate agonists and antagonists, we identified and characterized glutamate receptor subtypes in corpus allatum (CA) cells of the cockroach, Diploptera punctata. During the first ovarian cycle, corpora allata exhibited a cycle of changes in sensitivity to L-glutamate correlated to cyclic changes in rates of JH synthesis. When exposed to 60 microM L-glutamate in vitro, the active corpora allata of day-4 mated females produced 60% more JH, while inactive corpora allata at other ages showed 10-20% stimulatory response. Pharmacological characterization using various L-glutamate receptor agonists and antagonists indicated that several ionotropic subtypes of L-glutamate receptors were present in the CA. The CA showed an increase in rates of JH synthesis in response to NMDA, kainate, and quisqualate, but not to AMPA in both L-15 medium and minimum incubation medium. In contrast, applications of the metabotropic receptor-specific agonist trans-ACPD failed to elicit a change in the cytosolic [Ca2+](i) and JH production. An elevation of cytosolic calcium concentration, followed by 20-30% rise in JH production, was observed when active CA cells were exposed to 10-40 microM kainate. Kainate had no stimulatory effect on JH synthesis in calcium-free medium. The kainate-induced JH synthesis was blocked by 20 microM CNQX but was not affected by 20 microM NBQX. Kainate-stimulated JH production was not suppressed by MK-801 (a specific blocker of NMDA-receptor channel), nor was NMDA-stimulated JH production affected by CNQX (a specific antagonist of kainate receptor). These data suggest that active CA cells are stimulated to synthesize more JH by a glutamate-induced calcium rise via NMDA-, kainate- and/or quisqualate-sensitive subtypes of ionotropic L-glutamate receptors. The metabotropic-subtype and ionotropic AMPA-subtype L-glutamate receptors are unlikely to be present on active CA cells. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cockroaches; Corpora Allata; Cycloleucine; Cytosol; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamates; Juvenile Hormones; Kainic Acid; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, Metabotropic Glutamate | 2002 |
A kainate receptor increases the efficacy of GABAergic synapses.
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success rate (P(s)) of uIPSCs, whereas high concentrations of KAR agonists depressed GABAergic synapses. Ambient glutamate released by basal activities or stimulation of the stratum radiatum increases the efficacy of GABAergic synapses by activating presynaptic KARs, which facilitate Ca(2+)-dependent GABA release. The results suggest that glutamate released from excitatory synapses may also function as an intermediary between excitatory and inhibitory synapses to protect overexcitation of local circuits. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzoates; Benzodiazepines; Cyclic AMP-Dependent Protein Kinases; Enzyme Inhibitors; Evoked Potentials; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; gamma-Aminobutyric Acid; Glycine; Hippocampus; In Vitro Techniques; Interneurons; Kainic Acid; Neurons; Protein Kinase C; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Kainic Acid; Staurosporine; Synapses; Tetradecanoylphorbol Acetate; Tetrodotoxin | 2001 |
Involvement of non-NMDA receptors in the rescue of weaver cerebellar granule neurons and sensitivity to ethanol of cerebellar AMPA receptors in oocytes.
The cellular mechanism responsible for the death of cerebellar granule neurons in the weaver mutant mouse is still being intensely investigated. To determine if alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors are involved in producing the weaver phenotype or are altered by the weaver gene, we used (1) reverse transcription and polymerase chain reaction (RT-PCR) to detect transcripts of glutamate receptors (GluR1-4) from wild-type and mutant cerebella; (2) immunocytochemistry to establish the types of glutamate receptors present in granule neurons cultured from normal and homozygous weaver postnatal day 5-6 (P5-6) cerebella; (3) 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a blocker of glutamate (AMPA/Kainate/NMDA) receptors, and 6,7-dinitroquinoxaline-2,3-dione (NBQX), a blocker of AMPA and kainate receptors, to assess the number of neurons and the number of neurons with long neurites in cultures of homozygous weaver granule neurons; (4) two-electrode voltage clamp recordings to study AMPA glutamate receptor expression in Xenopus oocytes after injection of mRNA isolated from cerebella of normal and weaver P5-6, postnatal day 10 (P10) and postnatal day 23 (P23) mice; and (5) ethanol, which at low 1-10 mM concentrations had been shown previously to rescue homozygous weaver granule neurons in culture [Liesi et al., J. Neurosci. Res. 48 (1997) 571-579], to examine its effect on modulation of AMPA receptors expressed from mRNA. By RT-PCR, the mRNA coding for AMPA receptor subunits GluR1-4 were detected from +/+ and wv/wv cerebella, and by immunocytochemistry, GluR1, GluR2/3 and GluR4 were observed to be expressed in cultured +/+ and wv/wv granule cells. CNQX at 10 microM or NBQX at 10 microM significantly increased the number of surviving neurons and the number with long neurites as compared to wv/wv controls. In addition, CNQX was significantly more effective than NBQX. In oocytes injected with mRNA from P10 normal or weaver cerebella, the amplitudes of the responses to kainate were about equal. In contrast, the amplitudes of the kainate-activated currents in oocytes injected with weaver P23 mRNA were about twice as large as the currents observed in oocytes injected with mRNA from normal P23 cerebella, and both were larger than kainate-activated currents observed after injection of P10 normal and weaver mRNA. Kainate-activated AMPA receptor currents in oocytes injected with mRNA from P10 and P23 normal and homozygous weaver Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cell Differentiation; Cell Survival; Cells, Cultured; Central Nervous System Depressants; Cerebellum; Ethanol; Excitatory Amino Acid Antagonists; G Protein-Coupled Inwardly-Rectifying Potassium Channels; Gene Expression; Immunoblotting; Membrane Potentials; Mice; Mice, Neurologic Mutants; Neurons; Oocytes; Patch-Clamp Techniques; Potassium Channels; Potassium Channels, Inwardly Rectifying; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Xenopus | 2001 |
Neurotransmitters in the thalamus relaying visceral input to the insular cortex in the rat.
Neurotransmitters relaying ascending visceral information were examined by comparing the response of neurons in the insular cortex to vagal stimulation (0.8 Hz, 2 mA) before and after neurotransmitter antagonist injections (200 nl) in the ventroposterior parvocellular nucleus of the thalamus (VPpc). Cobalt (10 mM; presynaptic blocker) and kynurenate (100 microM; nonspecific excitatory amino acid antagonist) injections in the VPpc resulted in an attenuation (73-100 and 38-98%, respectively) of the evoked cortical response. Injections of the specific N-methyl-D-aspartate (NMDA) antagonist DL-2-amino-5-phosphonopentanoic acid (200 microM and 2 mM) did not affect the vagally evoked response, whereas the nonspecific non-NMDA antagonist L-glutamic acid diethylester (200 microM) attenuated the vagally evoked response by 66-100%. Three concentrations of the DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA)-specific antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 and 200 microM and 2 mM) attenuated the vagally evoked cortical response by 29 +/- 9, 31 +/- 10, and 59 +/- 8%, respectively. The more selective AMPA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (200 microM and 2 mM) inhibited the vagally evoked cortical response by 53 +/- 8 and 52 +/- 3%, respectively. Phentolamine (0.1 and 1.0 microM), a general alpha-adrenergic antagonist, and picrotoxin (0.1 and 1.0 microM), a GABA(A) antagonist, did not affect the vagally evoked response. Atropine, a muscarinic cholinergic antagonist, decreased the vagally evoked response by 40 +/- 2% at a concentration of 0.1 microM, but a higher concentration of 1.0 microM had no effect. These results indicate that the non-NMDA excitatory amino acid receptor is necessary for the relay of visceral information in the VPpc. Muscarinic receptors may modulate visceral neuronal excitability in the VPpc, although the exact interaction between the inhibitory (m2) and excitatory (m3 or m5) muscarinic receptor types found in the thalamus is not known. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adrenergic alpha-Antagonists; Animals; Atropine; Cerebral Cortex; Cobalt; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; Glutamates; Kynurenic Acid; Male; Muscarinic Antagonists; Neurons; Neurotransmitter Agents; Phentolamine; Picrotoxin; Quinoxalines; Rats; Rats, Wistar; Thalamus; Vagus Nerve; Viscera | 2001 |
Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at >20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Animals, Newborn; Bicuculline; Electric Stimulation; Hippocampus; In Vitro Techniques; Interneurons; Muscimol; Patch-Clamp Techniques; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, GABA-A; Receptors, Kainic Acid; Synapses | 2000 |
Field potential analysis of synaptic transmission in spiking neurons in a sparse and irregular neuronal structure in vitro.
Extracellular field potential (FP) recording of dendritic depolarizations evoked by afferent stimulation is widely used as a quantitative measure of excitatory synaptic transmission in brain slices in-vitro for structures with high neuronal density and regularity such as hippocampus, neocortex and cerebellum. On the other hand, FP recordings of somatic depolarizations induced by orthodromic or antidromic stimulation of afferent or efferent nerves have been used in some in-vivo preparations for mapping the central projections of these nerves. In this study, we examined the applicability of somatic FPs as a measure of excitatory synaptic transmission in a sparse and irregular brain structure. Excitatory FPs were induced in nucleus tractus solitarius (NTS) in the dorsal medulla by electrical impulse stimulation of primary afferent fibers in the tractus solitarius (TS) in rat brainstem slices in vitro. The evoked FP was rapid and biphasic, and was stimulus-intensity dependent and saturable. The morphology of these somatic FPs resembled the dendritic FPs found in hippocampal and neocortical slices, with an excitatory postsynaptic component that exhibited similar pharmacological and stimulus frequency-dependent properties as found in NTS cells with intracellular or whole-cell recordings. Simultaneous FP and whole-cell recordings revealed that the postsynaptic component of FP was associated with neuronal firing rather than subthreshold membrane depolarizations. We conclude that somatic FP recording provides a simple and reliable measure of excitatory neurotransmission in the TS-NTS pathway and is a useful alternative or adjunct to intracellular or whole-cell recordings especially for studies of long-term synaptic plasticity in spiking neurons. This technique may also be applicable to other brain regions that lack the regular and dense organization of hippocampal and neocortical structures. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Bicuculline; Brain Stem; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Intracellular Membranes; Neurons; Quinoxalines; Rats; Rats, Sprague-Dawley; Solitary Nucleus; Synaptic Transmission | 2000 |
NMDA and AMPA receptors in the dorsal nucleus of the lateral lemniscus shape binaural responses in rat inferior colliculus.
Binaural responses of single neurons in the rat's central nucleus of the inferior colliculus (ICC) were recorded before and after local injection of excitatory amino acid receptor antagonists (either 1,2, 3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX], (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CPP], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX], or (+/-)-2amino-5-phosphonovaleric acid [APV]) into the dorsal nucleus of the lateral lemniscus (DNLL). Responses were evoked by clicks delivered separately to the two ears at interaural time delays between -1.0 and +30 ms (positive values referring to ipsilateral leading contralateral click pairs). The neurons in our sample were excited by contralateral stimulation and inhibited by ipsilateral stimulation, and the probability of action potentials was reduced as the ipsilateral stimulus was advanced. Binaural inhibition resulted in response suppression that lasted up to 30 ms. Injection of excitatory amino acid antagonists into the DNLL contralateral to the recording site reduced the strength of binaural inhibition in the ICC. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX preferentially affected responses at small interaural time intervals (0-1.0 ms), whereas the N-methyl-D-aspartate (NMDA) antagonist CPP preferentially affected responses at longer intervals (1-30 ms). Both CNQX and APV produced a release from binaural inhibition, but neither drug was selective for specific intervals. The data support the idea that binaural inhibition in the rat ICC is influenced by both AMPA and NMDA receptor-mediated excitatory events in the contralateral DNLL. The results suggest that the AMPA receptors contribute selectively to the initial component of binaural inhibition and the NMDA receptors to a longer lasting component. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Acoustic Stimulation; Animals; Cochlear Nucleus; Excitatory Amino Acid Antagonists; Functional Laterality; Hearing; In Vitro Techniques; Inferior Colliculi; Male; Piperazines; Pons; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Time Factors | 2000 |
Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro.
Paired intracellular recordings were used to investigate recurrent excitatory transmission in layers II, III and V of the rat entorhinal cortex in vitro. There was a relatively high probability of finding a recurrent connection between pairs of pyramidal neurons in both layer V (around 12%) and layer III (around 9%). In complete contrast, we have failed to find any recurrent synaptic connections between principal neurons in layer II, and this may be an important factor in the relative resistance of this layer in generating synchronized epileptiform activity. In general, recurrent excitatory postsynaptic potentials in layers III and V of the entorhinal cortex had similar properties to those recorded in other cortical areas, although the probabilities of connection are among the highest reported. Recurrent excitatory postsynaptic potentials recorded in layer V were smaller with faster rise times than those recorded in layer III. In both layers, the recurrent potentials were mediated by glutamate primarily acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptors, although there appeared to be a slow component mediated by N-methyl-D-aspartate receptors. In layer III, recurrent transmission failed on about 30% of presynaptic action potentials evoked at 0.2Hz. This failure rate increased markedly with increasing (2, 3Hz) frequency of activation. In layer V the failure rate at low frequency was less (19%), and although it increased at higher frequencies this effect was less pronounced than in layer III. Finally, in layer III, there was evidence for a relatively high probability of electrical coupling between pyramidal neurons. We have previously suggested that layers IV/V of the entorhinal cortex readily generate synchronized epileptiform discharges, whereas layer II is relatively resistant to seizure generation. The present demonstration that recurrent excitatory connections are widespread in layer V but not layer II could support this proposal. The relatively high degree of recurrent connections and electrical coupling between layer III cells may be a factor in it's susceptibility to neurodegeneration during chronic epileptic conditions. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Entorhinal Cortex; Epilepsy; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Lysine; Male; Neural Pathways; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission | 2000 |
CNQX but not NBQX prevents expression of amphetamine-induced place preference conditioning: a role for the glycine site of the NMDA receptor, but not AMPA receptors.
We investigated the role of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in the induction and expression of an amphetamine-induced conditioned place preference (CPP) in mice. The selective AMPA-receptor antagonist 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) failed to prevent the induction of a CPP, except at a dose (30 mg/kg) that also produced a conditioned place aversion. NBQX also failed to affect the expression of a CPP at a dose high enough to reduce activity levels. In contrast, the less selective AMPA receptor antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX) prevented the expression of a CPP at doses (1-10 mg/kg) that had no effect on activity levels. We therefore tested the possibility that CNQX exerted its effects due to antagonism at the glycine site of the N-methyl-D-aspartate receptor. The glycine-site antagonist 7-chloro-4-hydroxy-3-(2-phenoxy)phenyl-2(1H)-quinolone also prevented the expression of a CPP at doses that had no effect on activity levels (0.1-0.3 mg/kg). These results suggest that neither the induction nor the expression of an amphetamine-induced CPP requires AMPA receptor-mediated transmission and that effects found in previous studies using the less selective AMPA receptor antagonists may be due to the effects of these compounds at the glycine site of the N-methyl-D-aspartate receptor. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amphetamine; Animals; Central Nervous System Stimulants; Conditioning, Operant; Excitatory Amino Acid Antagonists; Male; Mice; Mice, Inbred C57BL; Motor Activity; Quinolones; Quinoxalines; Receptors, AMPA; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate | 1999 |
Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis.
1. We examined the effects of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzol[f]quinoxaline-7-sulpho namide (NBQX), the kainate receptor antagonists gamma-(R-)-glutamylaminomethanesulphonic acid (GAMS) and 6,7,8,9-tetrahydro-5-nitro-1H-benz[g]indole-2,3-dione-3-oxime (NS-102), and the group III metabotropic glutamate receptor (mGluR) agonist 2-amino-4-phosphono-S-butanoic acid (L-AP4) on c-fos-like immunoreactivity (c-fos LI) in trigeminal caudalis (Sp5C), lateral reticular (LRt), medullary reticular (Md) and solitary tract (Sol) nuclei, after intracisternal injection of capsaicin in urethane anaesthetized Sprague-Dawley rats. 2. Few c-fos labelled cells were observed within Sp5C in capsaicin-vehicle treated animals. The number of positive c-fos cells increased by 17 fold after intracisternal capsaicin (5 nmol) administration. 3. Pretreatment with CNQX (0.02, 0.1, 0.6, 3 and 15 mg kg-1) or NBQX (0.01, 0.1 and 1 mg kg-1), administered intraperitoneally 15 min before capsaicin, significantly reduced labelled cells within Sp5C by a maximum of 45 and 34%, respectively. The number of c-fox LI cells within LRt, Md and Sol was not affected. Pretreatment with L-AP4 (1, 3 and 10 mg kg-1) decreased the number of Sp5C c-fos LI cells by a maximum of 30%, whereas GAMS (1 and 10 mg kg-1) and NS-102 (1 and 5 mg kg-1) did not show any significant effect. 4. These results suggest that blockade of AMPA receptors, but not kainate receptors, or the activation of group III mGluRs, decrease the response of Sp5C neurons to trigeminovascular activation. Thus, in addition to NMDA receptors, mGluRs and AMPA receptors may modulate cephalic pain and may provide a potential therapeutic target for antimigraine drugs. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Brain Stem; Capsaicin; Excitatory Amino Acid Antagonists; Gene Expression Regulation; Genes, fos; Male; Neurons; Proto-Oncogene Proteins c-fos; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; Trigeminal Caudal Nucleus | 1999 |
The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+.
Altered glutamatergic neurotransmission appears to be central to the pathophysiology of Parkinson's disease; consequently, considerable effort has been made to elucidate neuroprotective mechanisms against such toxicity. In the present study, the possible neuroprotective effect of glutamate receptor antagonists against MPP+ neurotoxicity on dopaminergic terminals of rat striatum was investigated. Different doses of glutamate receptor antagonists were coinfused with 1.5 microg of MPP+ into the striatum; kynurenic acid, a nonselective antagonist of glutamate receptors (30 and 60 nmol), partially protected dopaminergic terminal degeneration in terms of rescue of dopamine levels and tyrosine hydroxylase immunohistochemistry. Dizocilpine, a channel blocker of the NMDA receptor (1, 4, and 8 nmol), and 7-chlorokynurenic acid, a selective antagonist at the glycine site of the NMDA receptor (1 and 10 nmol), failed to protect dopaminergic terminals from MPP+ toxicity. However, 6-cyano-7-nitroquinoxaline-2,3-dione (0.5 and 1 nmol) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (1 nmol), two AMPA-kainate receptor antagonists, protected against MPP toxicity. Our findings suggest that the toxic effects of MPP+ on dopaminergic terminals are not mediated through a direct interaction with the NMDA subtype of glutamate receptor, but with the AMPA-kainate subtype. Topics: 1-Methyl-4-phenylpyridinium; 3,4-Dihydroxyphenylacetic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Corpus Striatum; Dizocilpine Maleate; Dopamine; Dopamine Agents; Excitatory Amino Acid Antagonists; Female; Homovanillic Acid; Kynurenic Acid; Microinjections; Neuroprotective Agents; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Tyrosine 3-Monooxygenase | 1999 |
Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro.
Studies in slices suggest that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated synaptic currents are not present in CA1 (Cornu ammonis) pyramidal neurons at birth (P0). We have re-examined this issue in the rat intact hippocampal formation (IHF) in vitro. Injections of biocytin or carbocyanine show that the temporo-ammonic, commissural and Schaffer collateral pathways are present at birth in the marginal zone of CA1. Electrical stimulation of these pathways evoked field excitatory postsynaptic potentials (fEPSPs) in the marginal zone of CA1 from embryonic day 19 (E19) to postnatal day 9 (P9). These fEPSPs are mediated by synaptic AMPA receptors as they are reduced or completely blocked by: (i) tetrodotoxin; (ii) high divalent cation concentrations; (iii) the adenosine A1 receptor agonist CPA; (iv) anoxic episodes; (v) the selective AMPA receptor antagonist 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7, 8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine (GYKI-53655) or the mixed AMPA-kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX). The amplitude of the fEPSPs is also reduced by D(-)-2-amino-5-phosphonopentanoic acid (D-APV) and its duration is increased by bicuculline suggesting the participation of N-methyl-D-aspartate (NMDA) and GABAA (gamma-aminobutyric acid) receptors. Finally, AMPA receptor-mediated fEPSPs are also recorded in P0 slices, but they are smaller and more labile than in the IHF. Our results suggest that in embryonic CA1 neurons, glutamate acting on AMPA receptors already provides a substantial part of the excitatory drive and may play an important role in the activity-dependent development of the hippocampus. Furthermore, the IHF may be a convenient preparation to investigate the properties of the developing hippocampus. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Afferent Pathways; Aging; Animals; Animals, Newborn; Benzodiazepines; Bicuculline; Cations, Divalent; Electric Stimulation; Embryonic and Fetal Development; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Fluorescent Dyes; Hippocampus; Hypoxia; Lysine; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Synapses; Tetrodotoxin | 1999 |
Distribution and properties of kainate receptors distinct in the CA3 region of the hippocampus of the guinea pig.
To characterize the nature of kainate (KA) receptors distinct in the CA3 region of the hippocampus, properties of depolarizations induced by pulses of KA or AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) applied to dendrites of CA3 neurons with micropipettes were studied in thin transverse slices of the guinea pig hippocampus. KA induced depolarizations at negligible latencies only when administered to the most proximal dendritic areas. The depolarization was unaffected by tetrodotoxin or by a decrease in Ca2+ and an increase in Mg2+ concentrations. The declining slope of the KA-induced depolarization was significantly slower than that of the AMPA-induced depolarization. In comparison with the AMPA-induced depolarization, the KA-induced depolarization was much less susceptible to antagonists such as 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI52466). 6, 7,8,9-Tetrahydro-5-nitro-1H-benz[g]indole-2,3-dione-3-oxime (NS-102) and (2S,4R)-4-methylglutamate (SYM 2081) were without effects. The threshold concentration of pressure-ejected KA to induce depolarizations was about 200 nM. Excitatory postsynaptic potentials elicited by mossy fiber stimulation were more potently suppressed by CNQX than by GYKI52466. These results indicate that receptors responsible for the slow KA depolarization in the CA3 region of the hippocampus are not AMPA receptors but KA receptors. They are localized in the most proximal part of the apical dendrite and distinct from those observed in primary cultures of hippocampal neurons. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Anti-Anxiety Agents; Benzodiazepines; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Guinea Pigs; Hippocampus; Kainic Acid; Microinjections; Pressure; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Time Factors | 1998 |
Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells.
In rat cerebellar slices, repetitive parallel fiber stimulation evokes an inward, postsynaptic current in Purkinje cells with a fast component mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and a slower component mediated by metabotropic glutamate receptors (mGluR). The mGluR-mediated excitatory postsynaptic current (mGluR-EPSC) is evoked selectively by parallel fiber stimulation; climbing fiber stimulation is ineffective. The mGluR-EPSC is elicited most effectively with increasing frequencies of parallel fiber stimulation, from a threshold of 10 Hz to a maximum response at approximately 100 Hz. The amplitude of the mGluR-EPSC is a linear function of the number of stimulus pulses without any apparent saturation, even with >10 pulses. Thus mGluRs at the parallel fiber-Purkinje cell synapse can function as linear detectors of the number of spikes in a burst of activity in parallel fibers. The mGluR-EPSC is present from postnatal day 15 and persists into adulthood. It is inhibited by the generic mGluR antagonist (RS)-a-methyl-4-carboxyphenylglycine and by the group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid at a concentration selective for mGluR1. Although the intracellular transduction pathway involves a G protein, the putative mediators of mGluR1 (phospholipase C and protein kinase C) are not directly involved, indicating that the mGluR-EPSC studied here is mediated by a different and still unidentified second-messenger pathway. Heparin, a nonselective antagonist of inositol-trisphosphate (IP3) receptors, has no significant effect on the mGluR-EPSC, suggesting that also IP3 might be not required for the response. Buffering intracellular Ca2+ with a high concentration of bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid partially inhibits the mGluR-EPSC, indicating that Ca2+ is not directly responsible for the response but that resting Ca2+ levels exert a tonic potentiating effect on the mGluR-EPSC. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzoates; Bicuculline; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA Antagonists; Glycine; Male; Nerve Fibers; Neural Inhibition; Patch-Clamp Techniques; Protein Kinase C; Purkinje Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Signal Transduction; Synaptic Transmission; Type C Phospholipases | 1998 |
Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat.
1. Microinjection studies have established that both NMDA and non-NMDA excitatory amino acid (EAA) receptor subtypes are involved in the integration of baroreceptor afferent inputs within the nucleus of the solitary tract (NTS). The present study was undertaken to determine which EAA receptor subtypes are involved in baroreceptor afferent integration by second and higher order NTS neurones. 2. Experiments utilizing intracellular recordings or extracellular recordings with microiontophoresis were performed in pentobarbitone-anaesthetized, paralysed and artificially ventilated rats to determine the ionotropic EAA receptor subtypes involved in baroreceptor afferent integration in the NTS. NTS neurones were classified according to their responses to aortic depressor nerve (ADN) stimulation: monosynaptic neurones (MSNs), polysynaptic neurones (PSNs) and ADN-non-evoked neurones (NENs). 3. In the extracellular studies, the ADN-evoked discharge of most MSNs was selectively reduced by microiontophoretic application of the non-NMDA receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; n = 8, P < 0.05) or 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo(f)quinoxaline-7-sulphonamide (NBQX; n = 9, P < 0.01), but not by the NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP-5; n = 6, P = 0.28). ADN-evoked responses of PSNs were attenuated by microiontophoretic application of AP-5 (n = 12, P < 0. 001), CNQX (n = 13, P < 0.001) or NBQX (n = 11, P < 0.001). All EAA antagonists inhibited the spontaneous discharge of MSNs/PSNs and NENs (P < 0.01 for each group). 4. In the intracellular studies, ADN stimulation evoked faster rising and shorter duration excitatory postsynaptic potentials (EPSPs) in MSNs (n = 16) than in PSNs (n = 15) (P < 0.05 for each comparison). 5. Our results demonstrate that synaptic inputs from ADN to MSNs have faster rise times and shorter durations than those to PSNs, suggesting that baroreceptor inputs to MSNs and PSNs are mediated by different synaptic mechanisms. These more rapid synaptic events are selectively mediated by non-NMDA receptors. In addition, synaptic integration of ADN inputs by PSNs is mediated by both NMDA and non-NMDA receptors. Finally, the ADN-evoked discharge of some MSNs and PSNs is not attenuated by ionotropic EAA antagonists, suggesting that another receptor or transmitter system may mediate synaptic excitation in these neurones. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Blood Pressure; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Iontophoresis; Kainic Acid; Male; N-Methylaspartate; Neurons, Afferent; Phenylephrine; Pressoreceptors; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Solitary Nucleus; Synapses; Vasoconstrictor Agents | 1998 |
In-vitro characterization of YM872, a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist.
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Binding, Competitive; Buffers; Cells, Cultured; Excitatory Amino Acid Antagonists; Hippocampus; Imidazoles; Kainic Acid; Male; Neuroprotective Agents; Oocytes; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Solubility; Xenopus laevis | 1998 |
Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate.
The functional relevance of presynaptic glutamate receptors in controlling presynaptic Ca2+ influx and thereby transmitter release is unknown. To test if presynaptic Ca2+ entry in the hippocampus is controlled by glutamate autoreceptors, we created a hippocampal slice preparation for investigation of presynaptic Ca2+ signals with Ca(2+)-sensitive microelectrodes after lesioning of neurons by glucose deprivation or kainate. Stratum radiatum and alveus stimulation-induced postsynaptic field potential components were irreversibly abolished in areas CA1 and CA3 of lesioned slices, whereas stratum radiatum stimulation still evoked afferent volleys. Repetitive stimulation of the stratum radiatum still induced decreases in extracellular Ca2+ concentration. Repetitive stimulation of the alveus no longer induced decreases in extracellular Ca2+ concentration, suggesting complete damage of pyramidal cells. The stratum radiatum stimulation-induced decreases in extracellular Ca2+ concentration in lesioned slices were comparable to those elicited during application of the glutamate antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and L-2-amino-5-phosphonovalerate. In lesioned slices the stimulus-induced presynaptic Ca2+ influx was reversibly reduced by kainate. RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), N-methyl-D-aspartate and glutamate without effects on afferent volleys. The kainate and N-methyl-D-aspartate effects on presynaptic Ca2+ signals were partly sensitive to 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline and L-2-amino-5-phosphonovalerate, respectively, while the AMPA effects were not significantly affected by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline, suggesting involvement of a novel glutamate receptor subtype. The involvement of a novel glutamate receptor subtype was supported by our findings that ionotropic glutamate receptor agonists also reduce presynaptic Ca2+ influx under conditions of blocked synaptic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione and L-2-amino-5-phosphonovalerate. 1-Aminocyclopentane-trans-1,3-dicarboxylic acid had no significant effect on presynaptic Ca2+ entry. Also, the presynaptic Ca2+ influx was not influenced by the glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione, 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline and L-2-amino-5-phosphonovalerate when applied alone. Low kainate concentrations (5 microM) reduced presynaptic Ca2+ signals in area CA3 but no Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cycloleucine; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Glucose; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Neuroprotective Agents; Organ Culture Techniques; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Synaptic Transmission | 1997 |
Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat.
Entorhinal cortex layer III cells send their axons into hippocampal area CA1, forming the less well studied branch of the perforant path. Using electrophysiological and morphological techniques within a slice preparation, we can classify medial entorhinal cortex layer III cells into four different types. Type 1 and 2 cells were projection cells. Type 1 cells fired regularly and possessed high input resistances and long membrane time constants. Electrical stimulation of the lateral entorhinal cortex revealed a strong excitation by both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials. Type 2 cells accommodated strongly, had lower input resistances, faster time constants and featured prominent synaptic inhibition. Type 1 and 2 cells responded to repetitive synaptic stimulation with a prolonged hyperpolarization. We identified the two other, presumed local circuit, cell types whose axons remained within the entorhinal cortex. Type 3 cells were regular firing, had high input resistances and slow membrane time constants, while type 4 cells fired at higher frequencies and possessed a faster time constant and lower input resistance than type 3 neurons. Type 3 cells presented long-lasting excitatory synaptic potentials. Type 4 neurons were the only ones with different responses to stimulation from different sites. Upon lateral entorhinal cortex stimulation they responded with an excitatory postsynaptic potential, while a monosynaptic inhibitory postsynaptic potential was evoked from deep layer stimulation. In contrast to type 1 and 2 neurons, none of the local circuit cells could be antidromically activated from deep layers, and prolonged hyperpolarizations following synaptic repetitive stimulation were also absent in these cells. Together, the complementing morphology and the electrophysiological characteristics of all the cells can provide the controlled flexibility required during the transfer of cortical information to the hippocampus. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Electric Stimulation; Entorhinal Cortex; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; In Vitro Techniques; Membrane Potentials; Neurons; Organophosphorus Compounds; Phosphinic Acids; Propanolamines; Quinoxalines; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, GABA-B; Synaptic Transmission | 1997 |
Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainate receptors.
The role of glutamate receptors in regulating programmed neuronal death and deafferentation-induced neuronal death in the brainstem auditory nuclei was studied by in ovo drug administration to chick embryos. The nucleus laminaris (NL) undergoes programmed developmental cell death of 19% between embryonic day 9 (E9) and E17. The AMPA/kainate receptor antagonist CNQX, when administered at doses of 200-300 microg/d from E8 to E15, prevented programmed neuronal death in NL through at least posthatching day 8, without producing anatomical or behavioral abnormalities. 3-((RS)-2-Carboxypiperazin-4-yl)-propyl-1-phos-phonic acid, an antagonist of NMDA receptors, had no effect on normal cell death in the NL. CNQX, given from E8 to E15 or only from E8 to E10, also blocked the 33% neuronal loss in the nucleus magnocellularis (NM) that follows surgical destruction of the otocyst on E3, a procedure that deafferents NM neurons by preventing formation of the cochlear nerve. Treatment either with CNQX or the more highly selective NBQX from E8 to E10, before the onset of synaptic transmission in NM and NL, was also effective in preventing normal neuronal death in NL. Analysis of the effects of CNQX or NBQX on spontaneous embryonic motility at E10 showed that the doses effective in preventing neuronal death suppressed motility for <8 hr. We conclude that periodic blockade of AMPA/kainate receptors can protect CNS neurons against subsequent programmed cell death or deafferentation-induced death. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Auditory Pathways; Brain Stem; Cell Death; Cell Survival; Chick Embryo; Excitatory Amino Acid Antagonists; Kinetics; Neurons; Piperazines; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Time Factors | 1997 |
Glycine causes increased excitability and neurotoxicity by activation of NMDA receptors in the hippocampus.
Glycine is an inhibitory neurotransmitter in the spinal cord and also acts as a permissive cofactor required for activation of the N-methyl-D-aspartate (NMDA) receptor. We have found that high concentrations of glycine (10 mM) cause marked hyperexcitability and neurotoxicity in organotypic hippocampal slice cultures. The hyperexcitability, measured using intracellular recording in CA1 pyramidal neurons was completely blocked by the NMDA receptor antagonist MK-801 (10 microM), but not by the AMPA receptor antagonist DNQX (100 microM). The neurotoxicity caused by glycine occurred in all regions of hippocampal cultures but was most marked in area CA1. There was significant CA1 neuronal damage in cultures exposed to 10 mM glycine for 30 min or longer (P < 0.01) or those exposed to 4 mM glycine for 24 h compared to control cultures (P < 0.01). The NMDA antagonists MK-801 (10 microM) and APV (100 microM) significantly reduced glycine-induced neuronal damage in all hippocampal subfields (P < 0.01). The AMPA antagonists CNQX, DNQX, and NBQX (100 microM) had no effect on glycine-induced neuronal damage. High concentrations of glycine therefore appear to enhance the excitability of hippocampal slices in an NMDA receptor-dependent manner. The neurotoxic actions of glycine are also blocked by NMDA receptor antagonists. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Benzoxazines; Cell Death; Dizocilpine Maleate; Electrophysiology; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Neurons; Neurotoxins; Organ Culture Techniques; Oxazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 1997 |
Neurones in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus.
1. In the rat, projections from the suprachiasmatic nucleus (SCN) to the supraoptic nucleus (SON) of the hypothalamus were characterized in vivo using extracellular recordings and in slice preparations using both extracellular and whole-cell patch clamp recording. 2. Of 117 magnocellular neurones recorded in the SON in vivo, fifteen (13%) displayed a short latency excitation, sixty-eight (58%) a short latency inhibition, six (5%) were unresponsive and twenty-eight (24%) gave long latency responses following SCN stimulation. 3. The responses of putative vasopressin cells in the SON to SCN stimulation in vivo (4 out of 61 cells, 7% excited; 49 out of 61 cells, 80% inhibited) were significantly different from those of putative oxytocin cells (10 out of 50 cells, 20% excited and 16 out of 50 cells, 32% inhibited; P < 0.02, test for differences between proportions). 4. Recordings in vitro using patch technology in whole-cell mode showed both inward and outward currents in SON cells at holding potentials near resting membrane potential following stimulation of the SCN region. The outward currents could be blocked by bicuculline (10 microM; n = 7) and the inward currents were blocked by the non-NMDA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (5 microM; n = 4). 5. We conclude that there is a strong projection from the SCN to the SON with both inhibitory (GABAergic) and excitatory (glutamatergic) components which may regulate the daily changes in neurohypophysial hormone secretion. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA Antagonists; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Male; Neural Pathways; Neurons; Optic Nerve; Oxytocin; Patch-Clamp Techniques; Quinoxalines; Rats; Rats, Wistar; Receptors, GABA-A; Suprachiasmatic Nucleus; Supraoptic Nucleus; Vasopressins | 1997 |
Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear.
The amplitude of the acoustic startle response is reliably enhanced when elicited in the presence of bright light (light-enhanced startle) or in the presence of cues previously paired with shock (fear-potentiated startle). Light-enhanced startle appears to reflect an unconditioned response to an anxiogenic stimulus, whereas fear-potentiated startle reflects a conditioned response to a fear-eliciting stimulus. We examine the involvement of the basolateral nucleus of the amygdala, the central nucleus of the amygdala, and the bed nucleus of the stria terminalis in both phenomena. Immediately before light-enhanced or fear-potentiated startle testing, rats received intracranial infusions of the AMPA receptor antagonist 2, 3-dihydroxy-6-nitro-7-sulphamoylbenzo(F)-quinoxaline (3 microg) or PBS. Infusions into the central nucleus of the amygdala blocked fear-potentiated but not light-enhanced startle, and infusions into the bed nucleus of the stria terminalis blocked light-enhanced but not fear-potentiated startle. Infusions into the basolateral amygdala disrupted both phenomena. These findings indicate that the neuroanatomical substrates of fear-potentiated and light-enhanced startle, and perhaps more generally of conditioned and unconditioned fear, may be anatomically dissociated. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acoustic Stimulation; Afferent Pathways; Amygdala; Animals; Anxiety; Avoidance Learning; Conditioning, Classical; Darkness; Excitatory Amino Acid Antagonists; Fear; Hypothalamus; Male; Photic Stimulation; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Reflex, Startle | 1997 |
Some behavioral effects of AMPA/kainate receptor agonist and antagonists.
The effects of an agonist (S-AMPA, i.c.v.), as well as competitive (CNQX, NBQX, DNQX, i.p.), and noncompetitive antagonists (GYKI 52466, i.p.) at the AMPA/kainate receptors were examined in the open field and the Vogel tests of anxiety. It was found that both kinds of antagonists inhibited rat exploratory behavior in a dose-dependent manner, at the dose range exhibiting a clear-cut tendency to decrease rat locomotor activity. They appeared inactive in the Vogel test over an examined dose-range. S-AMPA, whereas not changing in a significant way rat behavior in the open field, significantly enhanced the suppressive influence of a shock on drinking in the Vogel test. The drug administered at the dose of 2 micrograms/5 microliters, i.c.v., revealed also a tendency to decrease the motor activity followed by prodromal symptoms of epileptic-like activity in some subjects. It is concluded that AMPA/kainate receptors probably are not directly involved in the control of rat emotional behavior. Thus, their primary role as putative neuroprotective and anticonvulsant agents is indirectly confirmed. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Benzodiazepines; Conflict, Psychological; Drinking Behavior; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Exploratory Behavior; Male; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid | 1997 |
The role of excitatory amino acids in airway reflex responses in anesthetized dogs.
In these studies we examined the role of excitatory amino acids (EAAs) neurotransmission in communicating sensory inputs to the airway-related vagal preganglionic neurons, by examining the effects of either NMDA or AMPA/kainate receptor blockade on reflex and chemical responses of tracheal smooth muscle. Experiments were performed in chloralose anesthetized, paralyzed and mechanically ventilated beagle dogs (n = 18), under hyperoxic, normocapnic, and normohydric conditions. Topical application or microinjection of NMDA receptor blockers, into the region of the ventrolateral medulla where airway-related vagal preganglionic neurons are located, insignificantly decreased the reflex changes in tracheal tone. However, topical application or microinjection of AMPA/kainate subtype of glutamate receptor selective antagonists markedly reduced reflex increase in tracheal tone induced by (1) lung deflation, (2) stimulation of laryngeal cold receptors, and (3) activation of peripheral or central chemoreceptors. These effects were potentiated by prior NMDA receptor blockade. Findings indicate that an increase in central cholinergic outflow to the airways by a variety of excitatory afferent inputs is mediated via activation of EAA receptors, mainly AMPA/kainate subtype of glutamate receptors. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Anesthesia, General; Animals; Autonomic Fibers, Preganglionic; Blood Pressure; Chloralose; Dogs; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Female; Heart Rate; Lung Volume Measurements; Male; Muscle, Smooth; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Respiratory Mechanics; Trachea | 1997 |
Intrathecal blockade of both NMDA and non-NMDA receptors attenuates the exercise pressor reflex in cats.
In decerebrate unanesthetized cats we tested the hypothesis that glutamatergic-receptor blockade in the lumbosacral spinal cord attenuated the reflex increases in mean arterial pressure, inspired minute ventilation, and renal sympathetic nerve activity (RSNA) evoked by static contraction of the triceps surae muscles. Blockade of N-methyl-D-aspartate (NMDA) receptors by intrathecal injection of DL-2-amino-5-phosphonovaleric acid had no effect on the initial phase of the pressor, ventilatory, and RSNA responses to contraction but did attenuate the secondary phase of these responses. Subsequent blockade of non-NMDA receptors in the lumbosacral spinal cord by intrathecal injection of 6-cyano-7-nitroquinoxaline-2,3-dione attenuated both the initial phase of the pressor, RSNA, and ventilatory responses to contraction and the secondary phase of these responses. In addition, NMDA-receptor blockade had no effect on the pressor or RSNA responses to tendon stretch, whereas non-NMDA-receptor blockade abolished these responses. We confirmed that our results were not related to the order of the antagonists injected by performing a series of experiments in which a non-NMDA-receptor antagonist was injected first. Our findings suggest that non-NMDA receptors mediate the spinal transmission of the initial and secondary phases of the pressor, RSNA, and ventilatory responses to contraction and tendon stretch. Therefore, non-NMDA receptors in the dorsal horn appear to be involved in the spinal processing of input from mechanoreceptors and metaboreceptors. Our findings also suggest that NMDA receptors mediate the spinal transmission of the secondary phase of the pressor, RSNA, and ventilatory responses to contraction but do not mediate the spinal transmission of the responses to tendon stretch. Therefore, NMDA receptors in the dorsal horn appear to be involved in the spinal processing of input from metaboreceptors. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Blood Pressure; Cats; Decerebrate State; Excitatory Amino Acid Antagonists; Heart Rate; Injections, Spinal; Mechanoreceptors; Muscle Contraction; Muscle, Skeletal; Physical Exertion; Quinoxalines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Reflex, Stretch; Respiratory Mechanics; Stereotaxic Techniques; Sympathetic Nervous System; Synaptic Transmission | 1996 |
Distinct short-term plasticity at two excitatory synapses in the hippocampus.
A single mossy fiber input contains several release sites and is located on the proximal portion of the apical dendrite of CA3 neurons. It is, therefore, well suited to exert a strong influence on pyramidal cell excitability. Accordingly, the mossy fiber synapse has been referred to as a detonator or teacher synapse in autoassociative network models of the hippocampus. The very low firing rates of granule cells [Jung, M. W. & McNaughton, B. L. (1993) Hippocampus 3, 165-182], which give rise to the mossy fibers, raise the question of how the mossy fiber synapse temporally integrates synaptic activity. We have therefore addressed the frequency dependence of mossy fiber transmission and compared it to associational/commissural synapses in the CA3 region of the hippocampus. Paired pulse facilitation had a similar time course, but was 2-fold greater for mossy fiber synapses. Frequency facilitation, during which repetitive stimulation causes a reversible growth in synaptic transmission, was markedly different at the two synapses. At associational/ commissural synapses facilitation occurred only at frequencies greater than once every 10 s and reached a magnitude of about 125% of control. At mossy fiber synapses, facilitation occurred at frequencies as low as once every 40 s and reached a magnitude of 6-fold. Frequency facilitation was dependent on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-dependent kinase II, and was greatly reduced at synapses expressing mossy fiber long-term potentiation. These results indicate that the mossy fiber synapse is able to integrate granule cell spiking activity over a broad range of frequencies, and this dynamic range is substantially reduced by long-term potentiation. Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Egtazic Acid; Evoked Potentials; Guinea Pigs; Hippocampus; In Vitro Techniques; Long-Term Potentiation; Magnesium; Nerve Fibers; Neuronal Plasticity; Neurons; Pyramidal Cells; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synapses; Time Factors | 1996 |
Studies of synaptic transmission in vivo: indirect versus direct effects of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid/kainate antagonists on rat spinal sensory responses.
The (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) were examined by microiontophoretic administration in electrophysiological tests on spinal neurones in alpha-chloralose anaesthetized rats. The antagonists significantly reduced extracellularly recorded nociceptive and non-nociceptive responses, as expected; concurrently they reduced background discharge. When the background discharge rate was held constant, the antagonists no longer significantly reduced the evoked responses. This indicates that in the absence of such control, the antagonists decreased cell excitability and only indirectly affected the test responses. Unless such indirect effects have been controlled for, the interpretation of the actions of AMPA/kainate antagonists on evoked synaptic responses is compromised and may be erroneous. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Evoked Potentials; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Extracellular Space; Iontophoresis; Male; Microelectrodes; N-Methylaspartate; Neurons, Afferent; Nociceptors; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Spinal Cord; Synaptic Transmission | 1996 |
Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS.
While it is widely accepted that parasympathetic activity plays a significant role in cardiovascular, bronchomotor, and gastrointestinal function, little is known about the synaptic control of parasympathetic vagal neurons. In this study, we identified the neurotransmitter(s) and postsynaptic responses in dorsal motor nucleus of the vagus (DMNX) neurons upon stimulation of the nucleus of the solitary tract (NTS). Neurons were visualized in rat brain stem slices, and perforated patch-clamp techniques were used to record postsynaptic currents. NTS stimulation activated glutamatergic currents in DMNX that were separated into N-methyl-D-aspartate (NMDA) and non-NMDA components using D-2-amino-5-phosphonovalerate and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. The non-NMDA component was further characterized using cyclothiazide and concanavalin A to block desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and kainate receptors, respectively. Cyclothiazide increased the postsynaptic amplitude, whereas concanavalin A augmented duration, suggesting kainate, but not AMPA, currents are curtailed by desensitization. High frequency stimulations did not alter synaptic efficacy. In conclusion, this study demonstrates the existence of a monosynaptic glutamatergic pathway from NTS that activates NMDA, kainate, and AMPA postsynaptic receptors in DMNX neurons. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzothiadiazines; Brain; Concanavalin A; Electric Stimulation; Electrophysiology; Excitatory Amino Acid Antagonists; Neurons; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Solitary Nucleus; Synapses; Vagus Nerve | 1996 |
The importance of two specific domains in ligand binding to the AMPA/kainate glutamate receptors GluR2 and GluR6.
Chimeric receptor subunits of the AMPA receptor subunit GluR2 and the kainate receptor subunit GluR6 were constructed and stably expressed in baby hamster kidney cells. By using Ca2+ imaging and radioligand binding, we demonstrated that substitution of a specific domain showing homology to a bacterial leucine-isoleucine-valine binding protein (LIVBP) had no effect on the affinities of the tested agonists, but decreased the affinities of the antagonists CNQX, DNQX, and NBQX. On the other hand, when the first of two domains showing homology to a bacterial glutamine binding protein (QBP) in GluR2 was substituted with the corresponding region from GluR6, the affinity of AMPA decreased sevenfold and the affinity of kainate increased fourfold, indicating the importance of this domain in binding of these agonists. In contrast to this, the affinities of quisqualate and domoate, two other agonists, were unchanged, indicating that a region located C-terminal to the QBP domain is also involved in agonist binding. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Blotting, Western; Calcium; Cell Line; Cricetinae; Gene Expression; Kainic Acid; Kidney; Quinoxalines; Radioligand Assay; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Fusion Proteins; Transfection; Tritium | 1995 |
Characterization of the binding of [3H]NS 257, a novel competitive AMPA receptor antagonist, to rat brain membranes and brain sections.
The binding of [3H]NS 257 (1,2,3,6,7,8-hexahydro-3-(hydroxyimino)-N,N-[3H]dimethyl-7-methyl- 2- oxobenzo[2,1-b:3,4-c']dipyrrole-5-sulfonamide) to rat cortical membranes was characterized in the absence and presence of thiocyanate. Specific [3H]NS 257 binding was saturable and reversible, and the stimulating effect of thiocyanate on binding was optimal at 100 mM. In the presence of thiocyanate [3H]NS 257 bound to a single population of binding sites with an affinity of 225 +/- 8 nM and a binding site density of 0.61 +/- 0.04 pmol/mg of original tissue. Thiocyanate increased the affinity of the binding site labeled by [3H]NS 257 for both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and L-glutamate by a factor of 20 and 5, respectively. However, the affinity of the agonist domoate and the antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)-quinoxaline (NBQX) was decreased in the presence of thiocyanate. Apparently, the affinities of antagonists as well as agonists for the AMPA receptor can be either increased or decreased by thiocyanate. The rank order of potency of the putative agonists quisqualate > AMPA > L-glutamate > domoate > kainate and of the antagonists NBQX > CNQX is consistent with the labeling of AMPA receptors. Autoradiographic studies showed that the distribution of [3H]NS 257 binding sites in rat brain was similar to that of [3H]AMPA binding sites. NS 257 is the first AMPA antagonist to be described showing an increased affinity for the AMPA receptor in the presence of thiocyanate. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Autoradiography; Binding, Competitive; Cell Membrane; Cerebral Cortex; Hydrogen-Ion Concentration; Indoles; Kainic Acid; Male; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Sulfonamides; Thiocyanates; Tritium | 1995 |
Binding of the new radioligand (S)-[3H]AMPA to rat brain synaptic membranes: effects of a series of structural analogues of the non-NMDA receptor agonist willardiine.
This study examined the binding of (S)-[3H]AMPA, the radiolabelled active isomer of AMPA, to rat brain synaptic membranes. Under non-chaotropic conditions specific binding of 10 nM (S)-[3H]AMPA represented 33 +/- 2% of the total; this increased to 74 +/- 1% in the presence of 100 mM KSCN. (S)-[3H]AMPA binding was inhibited by non-NMDA receptor agonists and the antagonists NBQX and CNQX, with the following rank order of potency: NBQX > (S)-AMPA > or = quisqualate > CNQX > L-glutamate > domoate > or = kainate > (R)-AMPA. NMDA, and the metabotropic glutamate receptor agonist (1S,3R)-ACPD, up to 100 microM, did not inhibit (S)-[3H]AMPA binding. A number of willardiine analogues all effectively inhibited (S)-[3H]AMPA binding with the rank order of potency: (S)-5-fluorowillardiine > (S)-5-nitrowillardiine > (S)-5-trifluoromethylwillardiine > (S)-5-bromowillardiine approximately (S)-5-chlorowillardiine > (S)-5-cyanowillardiine > (S)-willardiine > (S)-5-iodowillardiine > (S)-6-methylwillardiine > (S)-5-methylwillardiine. This rank order closely reflects data from equilibrium measurements made, under voltage clamp, on cultured hippocampal neurons. In contrast the respective (R)-enantiomers and the racemate mixtures of (R,S)-3, 5 and 6-isowillardiine were relatively inactive. Similar IC50 values and thus rank orders of potency for the willardiines were observed in the presence of 100 mM KSCN. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Cycloleucine; Male; Pyrimidinones; Quinoxalines; Radioligand Assay; Rats; Rats, Wistar; Receptors, AMPA; Stereoisomerism; Synaptic Membranes; Tritium; Uracil | 1995 |
Kainate/AMPA receptor antagonists are anticonvulsant against the tonic hindlimb component of pentylenetetrazol-induced seizures in developing rats.
Non-NMDA receptor antagonists CNQX, DNQX, and NBQX (10-40 mg/kg IP) were tested against pentylenetetrazol-induced (100 mg/kg SC) seizures in 7 to 90-day-old rats. All three drugs significantly decreased the incidence of tonic hindlimb component of tonic-clonic pentylenetetrazol seizures, often in favor of increased incidence of forelimb tonus throughout development. In addition, in 7 to 25-day-old rats, DNQX and NBQX decreased the severity of seizures due to a decrease in total incidence of the tonic component of tonic-clonic seizures compared to age-matched controls. However, neither drug was able to consistently suppress the incidence or increase latency to onset of clonic and tonic-clonic pentylenetetrazol seizures. The data suggest that, during development, non-NMDA receptor transmission may play a role in the generation of the tonic component, but not in the generation of other components of pentylenetetrazol-induced seizures. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Animals; Anticonvulsants; Behavior, Animal; Epilepsy, Tonic-Clonic; Hindlimb; Male; Muscle Tonus; Pentylenetetrazole; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Seizures; Synaptic Transmission | 1995 |
NMDA and non-NMDA receptors on rat supraoptic nucleus neurons activated monosynaptically by olfactory afferents.
The recently discovered efferent projections from the main and accessory olfactory bulbs to the supraoptic nucleus (SON) were further investigated. Intracellular electrophysiological methods were used to determine (a) if these projections are monosynaptic, (b) which excitatory amino acid (EAA) receptor subtypes mediate responses to activation of these pathways and (c) whether the same receptor subtypes mediate responses of phasically firing (vasopressin) and continuously firing (putative oxytocin) neurons. Recordings were made from SON neurons in large explants and 500 microns thick horizontal slices, containing 2-6 mm of the piriform cortex and lateral olfactory tract (LOT). This allowed recording of synaptic responses to selective stimulation of the LOT. EPSPs in SON neurons faithfully followed stimulus frequencies of 50-100 Hz, indicating that these inputs were monosynaptic. Stimulus-evoked EPSPs were blocked by the non-specific EAA antagonist, kynurenate. Perifusion of the slice with Mg(2+)-free medium revealed the presence of NMDA receptors in addition to the non-NMDA receptors on both phasically and continuously firing cells, indeed, on all cells tested. Partial blockade of these EPSPs in Mg(2+)-free medium could be achieved with either the NMDA antagonist, AP5, or the non-NMDA antagonist, CNQX or NBQX. Full blockade of the stimulus-evoked EPSPs was effected by adding both types of antagonists to the medium, although spontaneous EPSPs were still observed in several cells. These results are consistent with prior studies showing both receptor subtypes in the SON. This is the first demonstration that afferent stimulation activates both subtypes in the same SON neuron regardless of its peptide content. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Electric Stimulation; Female; Kynurenic Acid; Male; Neurons; Neurons, Afferent; Olfactory Pathways; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate; Supraoptic Nucleus; Synapses | 1995 |
Presynaptic influence on the time course of fast excitatory synaptic currents in cultured hippocampal cells.
Since the lifetime of synaptically released glutamate is thought to be very brief, reflecting diffusion and glutamate uptake, the decay of synaptic currents is thought to represent the average elementary lifetime of a receptor channel bound only once by transmitter molecules. We show here that the decay of evoked non-NMDA synaptic currents can reflect presynaptic factors, in particular, the prolonged action of transmitter at postsynaptic receptors under conditions of enhanced transmitter release. We show that diffusion, high-affinity glutamate uptake, and non-NMDA receptor desensitization are insufficiently rapid to limit the decays of evoked synaptic currents to those of miniature synaptic currents in microcultures of rat hippocampal cells. Our results are consistent with recent studies suggesting that during evoked release, multiple glutamate quanta can interact with overlapping postsynaptic receptor domains. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Anti-Anxiety Agents; Benzodiazepines; Benzothiadiazines; Calcium; Cells, Cultured; Evoked Potentials; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Kinetics; Magnesium; Neurons; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Time Factors | 1995 |
Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice.
The behavioural and convulsant effects of imipenem (Imi), a carbapenem derivative, were studied after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration in DBA/2 mice, a strain genetically susceptible to sound-induced seizures. The anticonvulsant effects of some excitatory amino acid antagonists and muscimol (Msc), a GABAA agonist, against seizures induced by i.p. or i.c.v. administration of Imi were also evaluated. The present study demonstrated that the order of anticonvulsant activity in our epileptic model, after i.p. administration, was (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)-cyclohepten-5,10-imine maleate (MK-801) > (+/-)(E)-2-amino-4-methyl-5-phosphono-3-pentenoate ethyl ester (CGP 39551) > 3-((+/-)-2-carboxypiperazin-4-yl)propenyl-1-phosphonic acid (CPPene) > 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CCP) > 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX). Ifenprodil, a compound acting on the polyamine site of NMDA receptor complex was unable to protect against seizures induced by Imi, suggesting that the poliamine site did not exert a principal role in the genesis of seizures induced by Imi. In addition, the order of anticonvulsant potency in our epileptic model, after i.c.v. administration, was CPPene > MK-801 > Msc > (-)-2-amino-7-phosphonic acid (AP7) > gamma-D-glutamylaminomethylsulphonate (gamma-D-GAMS) > NBQX > kynurenic acid (KYNA) > 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). The relationship between the different site of action and the anticonvulsant activity of these derivatives was discussed. Although the main mechanism of Imi induced seizures cannot be easily determined, potential interactions with the receptors of the excitatory amino acid neurotransmitters exists. In fact, antagonists of excitatory amino acids are able to increase the threshold for the seizures or to prevent the seizures induced by Imi. In addition, Imi acts on the central nervous system by inhibition of GABA neurotransmission and Msc, a selective GABAA agonist, was able to protect against seizures induced by Imi. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Dizocilpine Maleate; Excitatory Amino Acids; Glutamine; Imipenem; Kynurenic Acid; Mice; Mice, Inbred DBA; Muscimol; Piperazines; Piperidines; Quinoxalines; Seizures | 1995 |
NBQX, an improved non-NMDA antagonist studied in retinal ganglion cells.
The quinoxaline derivative, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), significantly reduced the currents evoked by exogenous application of quisqualate (QQ), kainate (KA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) when applied to ganglion cells, using whole-cell recording in a slice preparation of the tiger salamander retina. A comparison between NBQX and CNQX indicates that NBQX is more effective in blocking AMPA receptors. Also, at up to 10 microM, NBQX has no effect on NMDA-induced currents. Thus at this concentration, NBQX shows no affinity for the glycine binding site of NMDA receptors. For this reason, NBQX is preferred over CNQX for a more effective and selective antagonism toward non-NMDA receptors. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Ambystoma; Animals; Electrophysiology; Excitatory Amino Acid Antagonists; In Vitro Techniques; Quinoxalines; Receptors, AMPA; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Retinal Ganglion Cells | 1995 |
Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.
The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of NG-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while NG-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adenosine; Amino Acid Oxidoreductases; Amino Acids; Animals; Anticonvulsants; Arginine; Carbon Dioxide; Cerebellar Cortex; Cerebrovascular Circulation; Drug Interactions; Electric Stimulation; Isomerism; Magnesium; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Regional Blood Flow; Tetrodotoxin | 1994 |
An in vivo pharmacological study of single group Ia fibre contacts with motoneurones in the cat spinal cord.
1. Direct experimental evidence was obtained on the spatial distribution of active synaptic contacts from single Ia muscle afferents on the dendrites of lumbosacral motoneurones in anaesthetized cats. 2. An extracellular micropipette was used to pressure eject the AMPA/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) in close proximity to the intracellular recording site, in order to create an extracellular concentration gradient of the antagonist. The effect of antagonist ejection on the time course and amplitude of excitatory postsynaptic potentials (EPSPs) evoked in motoneurones by impulses in single group Ia fibres was examined. 3. Pressure ejection of NBQX resulted in a complete block of the monosynaptic group Ia EPSP in two cells, and a significant reduction to 23-57% of control EPSP peak amplitudes in a further six cells (mean, 27%; n = 8). These effects were not associated with changes in membrane potential or membrane time constant. 4. The reduction in amplitude of these single group Ia fibre EPSPs following ejection of NBQX was usually accompanied by a pronounced slowing in the time course of the EPSPs. On average, the EPSP rise times and half-widths were increased by 269 and 37%, respectively. This is most probably due to a considerable spatial spread of the synaptic contacts along the dendrites of motoneurones, with the most proximal synaptic contacts (producing the briefest synaptic potentials) subjected to a greater reduction in amplitude due to a higher local antagonist concentration. 5. An equivalent dendritic cable model of the motoneurone was used to interpret the observed changes in the time course of single fibre EPSPs. The time course of control single fibre EPSPs examined in the present study could be well matched using the cable model and assuming a single location for synaptic input. The observation of a slowed EPSP time course following antagonist ejection indicated that this assumption was not correct and that there was in fact considerable spatial spread in the synaptic contacts arising from these single afferent fibres. These results provide direct evidence that spatial spread of synaptic input may not be detected using the time course of a synaptic potential in conjunction with a neuronal cable model of the postsynaptic cell. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cats; Dendrites; Electrophysiology; Motor Neurons; Neural Pathways; Quinoxalines; Spinal Cord; Synapses; Time Factors | 1994 |
Nucleus tractus solitarius and excitatory amino acids in afferent-evoked inspiratory termination.
This study tested the hypothesis that excitatory amino acid (EAA) neurotransmission at non-N-methyl-D-aspartate (non-NMDA), but not NMDA, receptors within medial regions of the nucleus tractus solitarius (NTS) is required in the inspiratory termination elicited by vagal or intercostal nerve (ICN) stimulation. Adult cats were anesthetized, decerebrated, vagotomized, and ventilated. After control responses to stimulation of the superior laryngeal nerve (SLN), vagus, and ICN were obtained, EAA receptor antagonists were injected into the medial aspects of the NTS. Injections of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 6,7-dinitro-quinoxaline-2,3-dione (DNQX), EAA receptor antagonists; (+/-)-2-amino-5-phosphonopentanoic acid (AP5), an NMDA antagonist; or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), a non-NMDA antagonist, ipsilateral to the vagus abolished the termination response. The SLN-elicited response persisted after AP5 injection but was abolished by NBQX injections. The ICN-elicited response persisted after bilateral injections of CNQX/DNQX or procaine. We conclude that the inspiratory termination elicited by ICN stimulation is independent of the regions medial to the NTS. Inspiratory termination elicited by vagal or SLN stimulation requires non-NMDA-mediated EAA neurotransmission within medial aspects of the NTS, but the vagally elicited response also requires NMDA receptors. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Blood Pressure; Cats; Decerebrate State; Electric Stimulation; Female; Intercostal Nerves; Laryngeal Nerves; Male; Neurons, Afferent; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Respiratory Mechanics; Solitary Nucleus; Synaptic Transmission; Vagus Nerve | 1994 |
Gamma-D-glutamylaminomethyl sulfonic acid (GAMS) distinguishes kainic acid- from AMPA-induced responses in Xenopus oocytes expressing chick brain glutamate receptors.
The effects of the glutamate receptor antagonist gamma-D-glutamylaminomethyl sulfonic acid (GAMS) on inward currents induced by bath application of kainic acid (KA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were studied with single-electrode voltage clamp methods in Xenopus oocytes injected 3-5 days previously with mRNA from the brain of E16-17 chick embryos. Both AMPA and KA induced smooth inward currents, with Hill coefficients of 1.5 (AMPA) and 2.1 (KA). GAMS, at concentrations up to 1 mM, produced no reliable antagonism of AMPA-induced currents but showed a consistent, dose-dependent and reversible antagonism of KA-induced responses; the slope of the Schild plot was 0.76 and the pA2 value 4.32. In the presence of GAMS, however, the Hill coefficient for AMPA is reduced significantly and approaches unity, suggesting that AMPA interacts with both KA and AMPA binding sites on chick brain glutamate receptors. The selectivities of three quinoxalinedione antagonists (6,7-dinitroquinoxaline-2,3-dione [DNQX], 6-cyano-7- nitroquinoxaline-2,3-dione [CNQX] and 6-nitro-7-sulfamoyl-benzo(F)quinoxaline-2,3-dione [NBQX]) were then compared with that shown by GAMS. DNQX, CNQX and NBQX all blocked the effects of both KA and AMPA completely, competitively, reversibly and dose-dependently, with Schild-plot slopes very close to 1.0. Against AMPA, observed pA2 values were 6.58 for DNQX, 6.43 for CNQX and 6.77 for NBQX. Against KA, pA2 values were 6.42 for DNQX, 6.56 for CNQX and 7.21 for NBQX.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Chemistry; Chick Embryo; Electrophysiology; Glutamine; Kainic Acid; Kinetics; Oocytes; Quinoxalines; Receptors, Glutamate; RNA, Messenger; Xenopus | 1993 |
Billion-fold difference in the toxic potencies of two excitatory plant amino acids, L-BOAA and L-BMAA: biochemical and morphological studies using mouse brain slices.
Plant amino acids beta-N-oxalylamino-L-alanine (L-BOAA, present in Lathyrus sativus) and beta-N-methylamino-L-alanine (L-BMAA, present in Cycas circinalis) have been implicated in the pathogenesis of human neurological disorders lathyrism and amyotrophic lateral sclerosis-Parkinson's dementia complex of Guam (ALS-PD), respectively. In view of the conflicting reports that have emerged on the role of L-BMAA in ALS-PD, we reinvestigated the comparative toxicity of L-BMAA and L-BOAA. We report here the potent toxicity of L-BOAA as examined in an in vitro model consisting of sagittal slices of mouse brain. Incubation of sagittal slices of mouse brain with L-BOAA (1 pM) resulted in significant leakage of lactate dehydrogenase (LDH) and potassium from the slices into the medium. Under similar conditions, L-BMAA-induced LDH leakage from the slices into the medium was observed only at very high concentration of the toxin, namely 1 mM. N-Methyl-D-aspartate (NMDA) receptor antagonists ameliorated the toxic effects of L-BMAA, while non-NMDA receptor antagonists (quinoxalinediones) protected against the toxicity of L-BOAA. Incubation of slices with L-BOAA for 1 h resulted in extensive vacuolation and degeneration of neurons in the thalamus and brain stem, and to a lesser extent in the hippocampus and cerebellar nuclei. The large sized neurons appeared to be affected to a greater extent than the smaller ones. The neurons in other areas of the brain also revealed variable degree of degeneration with swelling of axons and dendrites.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids, Diamino; Animals; beta-Alanine; Brain; Brain Chemistry; Cyanobacteria Toxins; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Histocytochemistry; In Vitro Techniques; L-Lactate Dehydrogenase; Mice; Neurotoxins; Paraffin Embedding; Plants; Potassium; Quinoxalines | 1993 |
Maintenance of pharmacologically-immature glutamate receptors by aberrant synapses in the chick cochlear nucleus.
Surgical destruction of the otocyst in chick embryos prevents formation of the *** ear, abolishes normal cochlear input to the cochlear nucleus (nucleus magnocellularis, NM) and results in axons from the contralateral NM forming (in addition to their normal bilateral endings in nucleus laminaris, NL) a novel and functional aberrant projection to the deafferented NM. We studied the pharmacology of synaptic transmission at aberrant synapses in an in vitro preparation of the brainstem in chick embryos and hatchlings. Transmission at the aberrant synapses (as with cochlear nerve synapses in NM and NM synapses in NL) is blocked by the quinoxalinedione antagonists CNQX and NBQX, confirming the presence of excitatory amino acid receptors of the non-NMDA subtype. At cochlear nerve synapses in NM, the antagonist potency of NBQX normally decreases rapidly after embryonic day (E)18 (IC50 = 0.69 +/- 0.06 microM, mean +/- S.E.M.), reaching an asymptotic value by E21 (IC50 = 2.7 +/- 0.4 microM) that is maintained at least through posthatching day (P)14 (IC50 = 3.6 +/- 0.3 microM). In the case of the aberrant endings, the potency of NBQX remained (from E21 [IC50 = 0.6 +/- 0.1 microM] through at least P14[IC50 = 0.5 +/- 0.1 microM]) at levels that are statistically indistinguishable from the E18 value for normal cochlear nerve synapses.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Chick Embryo; Chickens; Cochlear Nucleus; Quinoxalines; Receptors, Glutamate; Synapses | 1993 |
Influence of hypoxia on excitation and GABAergic inhibition in mature and developing rat neocortex.
To analyze the functional consequences of hypoxia on the efficacy of intracortical inhibitory mechanisms mediated by gamma-aminobutyric acid (GABA), extra- and intracellular recordings were obtained from rat primary somatosensory cortex in vitro. Hypoxia, induced by transient N2 aeration, caused a decrease in stimulus-evoked inhibitory postsynaptic potentials (IPSPs), followed by a pronounced anoxic depolarization. Upon reoxygenation, the fast (f-) and long-latency (l-) IPSP showed a positive shift in the reversal potential by 24.4 and 14.9 mV, respectively. The peak conductance of the f- and l-IPSP was reversibly reduced in the postanoxic period by 72% and 94%, respectively. Extracellular field potential recordings and application of a paired-pulse inhibition protocol confirmed the enhanced sensitivity of inhibitory synaptic transmission for transient oxygen deprivation. Intracellular recordings from morphologically or electrophysiologically identified interneurons did not reveal any enhanced susceptibility for hypoxia as compared to pyramidal cells, suggesting that inhibitory neurons are not selectively impaired in their functional properties. Intracellularly recorded spontaneous IPSPs were transiently augmented in the postanoxic period, indicating that presynaptic GABA release was not suppressed. Developmental studies in adult (older than postnatal day 28), juvenile (P14-18), and young (P5-8) neocortical slices revealed a prominent functional resistance of immature tissue for hypoxia. In comparison with adult cortex, the hypoxia-induced reduction in excitatory and inhibitory synaptic transmission was significantly smaller in immature cortex. Our data indicate a hypoxia-induced distinct reduction of postsynaptic GABAergic mechanisms, leading to the manifestation of intracortical hyperexcitability as a possible functional consequence. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Animals; Cell Hypoxia; Electric Conductivity; Electric Stimulation; Evoked Potentials; GABA Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Interneurons; Neurons; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Somatosensory Cortex; Synaptic Transmission | 1993 |
A comparison of the actions of agonists and antagonists at non-NMDA receptors of C fibres and motoneurones of the immature rat spinal cord in vitro.
1. The shift in d.c. potential in dorsal roots (EC50 8.0 microM +/- 0.9 s.e. mean, n = 5) or depression of the C elevation of the compound action potential (EC50 3.0 microM +/- 0.3, n = 7) have been used to measure the depolarizing action of kainate on dorsal root C fibres of immature (3 to 5 day old) rats. Depolarization of motoneurones was measured from the shift in d.c. potential in ventral roots. 2. 6-Cyano-7-nitroquinoxaline,2-3,dione (CNQX) (pA2 5.78 +/- 0.06, n = 8) and 6-nitro-7-suplhamobenzo(f)quinoxaline-2,3-dione (NBQX) (pA2 5.75 +/- 0.04, n = 7) had similar potencies as antagonists of kainate at dorsal root fibres. The potency of NBQX as a kainate antagonist was similar also at motoneurones (pA2 5.72 +/- 0.07, n = 3). At motoneurones, NBQX was less potent as an antagonist of domoate (pA2 5.29 +/- 0.05) and more potent as an antagonist of S-alpha-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (pA2 6.80 +/- 0.09) than as an antagonist of kainate. 3. Application of L-glutamate, quisqualate and RS-AMPA to dorsal roots produced only short lasting depolarizations but kainate concentration-effect plots were shifted to the right in the presence of these three agonists (pA2 5.08 +/- 0.08, (n = 3), 5.59 +/- 0.04, (n = 4) and 4.46 +/- 0.04 (n = 4) respectively). Slopes of dose-ratio against concentration were significantly less than one for the latter antagonism. 4. The amplitude of depolarizations induced by L-glutamate, AMPA and quisqualate were increased up to ten fold and those induced by kainate up to two fold following treatment of dorsal roots with concanavalin A. The duration of the responses was increased also by the latter treatment. Folowing 85 s applications of glutamate, quisqualate, AMPA and kainate the mean respective times (s +/- s.e.mean (n))taken for responses to decay to half the peak amplitude were increased from 63 +/- 7 (10), 86 +/- 17 (4),95 +/- 19 (4) and 135 +/- 3 (12) to 202 +/- 49 (10), 147 +/- 7 (4), 160 +/- 13 (6) and 163 +/- 10 (10). Under similar conditions the mean decay time of y-aminobutyric acid-induced responses was 145 +/- 7 (10). This was not significantly altered by concanavalin A treatment.5. Application to dorsal roots of L-aspartate at concentrations up to 5 mm (with or without concanavalin A treatment), the selective metabotropic agonist 1S,3R-trans-1-aminocyclopentane-1,3-dicarboxylate (1 mM,) and D-serine (20 pM) in the presence or absence of N-methyl-D-aspartate (NMDA,500 pM) neither depolarized the prep Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Concanavalin A; In Vitro Techniques; Kainic Acid; Motor Neurons; Nerve Fibers; Quinoxalines; Rats; Receptors, Amino Acid; Spinal Cord | 1993 |
Complex pharmacological properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes.
The pharmacological properties of two glutamate receptor subtypes, GluR-A/B and GluR-B/D, were examined in RNA-injected Xenopus oocytes using two-electrode voltage clamp. Concentration-response relations revealed that the potencies of L-glutamate, kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) varied slightly between the two receptor subtypes, but the rank order of agonist potency did not. The EC50 values for GluR-A/B receptors were 3.31 microM for AMPA, 6.16 microM for glutamate, and 57.5 microM for kainate, whereas the EC50 values for GluR-B/D receptors were 5.01 microM, 32.3 microM, and 64.6 microM for AMPA, L-glutamate, and kainate, respectively. The potencies of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) were quantified by Schild analysis. The potency of NBQX at blocking currents mediated by GluR-A/B receptors changed depending on the agonist used to activate the receptors (pA2 values were as follows: for block of kainate, 7.23 +/- 0.01; L-glutamate, 6.78 +/- 0.02; AMPA, 6.95 +/- 0.02). Differences between agonists were less marked in cells expressing GluR-B/D receptors (pA2 values: kainate, 7.28 +/- 0.01; L-glutamate, 7.30 +/- 0.02; AMPA, 7.35 +/- 0.01). In each case, the slope of the Schild regression was not different from unity, consistent with competitive antagonism of these receptors by NBQX. CNQX also blocked GluR-A/B and GluR-B/D receptors competitively but was less potent than NBQX and did not differentiate between agonists or subunit combination. These data suggest that L-glutamate, kainate, and AMPA bind to different receptor substructures on recombinant AMPA receptors and that NBQX but not CNQX binds to these sites with different affinities. Moreover, because the properties of these binding sites vary between GluR-A/B and GluR-B/D receptors, our findings provide a basis for mutational analysis aimed at identifying receptor domains involved in agonist and antagonist binding. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Membrane Potentials; Oocytes; Quinoxalines; Receptors, AMPA; Receptors, Neurotransmitter; Recombinant Proteins; Xenopus laevis | 1992 |
Inhibition of cisplatin-induced emesis in ferrets by the non-NMDA receptor antagonists NBQX and CNQX.
The excitatory amino acid (EAA) receptor antagonists, 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo(f)quinoxaline (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which preferentially block non-N-methyl-D-aspartate (non-NMDA) subtypes of EAA receptors, effectively inhibit cisplatin-induced emesis in ferrets. A high dose of cisplatin (10 mg/kg i.v.) was used which induced emesis in all saline-treated control ferrets. At 10 mg/kg i.v., NBQX totally prevented cisplatin-induced emesis in 5 of 6 ferrets and CNQX totally prevented emesis in 3 of 5 ferrets. By comparison, each of the 5-HT3 inhibitors, zacopride and ondansetron, at 1.0 mg/kg i.v. (a dose considered in the high therapeutic range for controlling emesis by these compounds), totally prevented emesis in 2 of 5 ferrets. It is concluded that non-NMDA antagonists effectively inhibit cisplatin-induced emesis. They are potential antiemetic compounds, alone or in combination with 5-HT3 antagonists or other more conventional drugs of choice. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzamides; Bridged Bicyclo Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cisplatin; Exploratory Behavior; Ferrets; Imidazoles; Male; Ondansetron; Quinoxalines; Receptors, Amino Acid; Receptors, Cell Surface; Serotonin Antagonists; Vomiting | 1992 |
Quisqualic acid-induced neurotoxicity is protected by NMDA and non-NMDA receptor antagonists.
Quisqualic acid-mediated excitotoxicity has been attributed essentially to the activation of non-N-methyl-D-aspartate (non-NMDA) receptors. In the present study we demonstrate the possible involvement of both NMDA and non-NMDA receptors in quisqualic acid-induced toxicity in mouse brain slices, in vitro. Incubation of mouse brain sagittal slices with various concentrations of quisqualic acid resulted in significant increase in the leakage of lactate dehydrogenase and potassium from the slices into the medium. Prior incubation of mouse brain slices with NMDA (MK-801 or AP7) or non-NMDA receptor antagonists (GDEE or quinoxalinediones) protected against quisqualic acid-mediated toxicity. Slices prepared from animals pretreated in vivo with MK-801 (5 mg/kg b.wt.) were also resistant to the toxic effects of quisqualic acid, indicating the possible involvement of NMDA receptors in quisqualic acid toxicity. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ion Channel Gating; L-Lactate Dehydrogenase; Mice; Potassium; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate | 1992 |
Developmental changes in the effects of drugs acting at NMDA or non-NMDA receptors on synaptic transmission in the chick cochlear nucleus (nuc. magnocellularis).
The developmental pharmacology of excitatory amino acid (EAA) receptors in the chick cochlear nucleus (nucleus magnocellularis, NM) was studied by means of bath application of drugs and recording of synaptically-evoked field potentials in brain slices taken from chicks aged embryonic day (E) 14 through hatching (E21). The abilities of various EAA agonists (N-methyl-D-aspartate [NMDA], kainic acid, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]) to suppress postsynaptic responses by depolarization block and of EAA antagonists ((3-[RS]-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CCP], dizocilpine [MK-801], 6-nitro-7-sulfamoyl-benzo(F)quinoxaline-2,3 dione [NBQX], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX] and 6,7-dinitroquinoxaline-2,3-dione [DNQX]) to suppress these responses directly were assessed quantitatively. The results support the existence of NMDA receptors in NM and suggest that the ability of these receptors to influence synaptically-evoked responses declines dramatically during the last week of embryonic life. The results similarly suggest that the non-NMDA receptors in NM undergo changes in density and/or function during a period of development when the cochlear nucleus is undergoing a variety of morphological and functional transformations. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Chick Embryo; Cochlear Nerve; Dizocilpine Maleate; Dose-Response Relationship, Drug; Electric Stimulation; Embryonic and Fetal Development; Evoked Potentials; Ibotenic Acid; N-Methylaspartate; Piperazines; Quinolinic Acid; Quinolinic Acids; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synapses; Synaptic Transmission | 1992 |