Page last updated: 2024-08-25

6-carboxyfluorescein and lysophosphatidylcholines

6-carboxyfluorescein has been researched along with lysophosphatidylcholines in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19901 (16.67)18.7374
1990's1 (16.67)18.2507
2000's1 (16.67)29.6817
2010's3 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gómez-Fernández, JC; Hernández-Caselles, T; Villalaín, J1
Miyahara, M; Morimoto, YM; Moromizato, Y; Okimasu, E; Sasaki, J; Shiraishi, N; Utsumi, K; Watanabe, S1
Dordschbal, B; Roos, W; Viehweger, K1
Aranda, FJ; Espuny, MJ; Manresa, A; Marqués, A; Ortiz, A; Sánchez, M; Teruel, JA1
Creutz, CE; Eaton, JM; Gee, VE; Hira, JK1
Mitchell, NJ; Pokorny, A; Seaton, P1

Other Studies

6 other study(ies) available for 6-carboxyfluorescein and lysophosphatidylcholines

ArticleYear
Stability of liposomes on long term storage.
    The Journal of pharmacy and pharmacology, 1990, Volume: 42, Issue:6

    Topics: Chemical Phenomena; Chemistry, Physical; Chromatography, Gas; Drug Stability; Drug Storage; Fatty Acids; Fluoresceins; Linoleic Acid; Linoleic Acids; Lipid Peroxidation; Liposomes; Lysophosphatidylcholines; Phosphatidylcholines; Phospholipids; Vitamin E

1990
Inhibition of phospholipase A2 and platelet aggregation by glycyrrhizin, an antiinflammation drug.
    Acta medica Okayama, 1983, Volume: 37, Issue:5

    Topics: Anti-Inflammatory Agents; Cell Membrane Permeability; Collagen; Dose-Response Relationship, Drug; Fluoresceins; Glycyrrhetinic Acid; Glycyrrhizic Acid; Humans; Liposomes; Lysophosphatidylcholines; Phospholipases; Phospholipases A; Phospholipases A2; Platelet Aggregation; Pulmonary Surfactants

1983
Elicitor-activated phospholipase A(2) generates lysophosphatidylcholines that mobilize the vacuolar H(+) pool for pH signaling via the activation of Na(+)-dependent proton fluxes.
    The Plant cell, 2002, Volume: 14, Issue:7

    Topics: Amiloride; Cell Membrane Permeability; Cells, Cultured; Enzyme Activation; Fluoresceins; Hydrogen-Ion Concentration; Lysophosphatidylcholines; Microscopy, Confocal; Papaveraceae; Phospholipases A; Phytoalexins; Plant Extracts; Sesquiterpenes; Signal Transduction; Sodium Chloride; Sodium-Hydrogen Exchangers; Terpenes; Vacuolar Proton-Translocating ATPases; Vacuoles

2002
Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa.
    Journal of colloid and interface science, 2010, Jan-15, Volume: 341, Issue:2

    Topics: Cell Membrane; Cell Shape; Cholesterol; Erythrocytes; Fluoresceins; Glycolipids; Hemoglobins; Hemolysis; Humans; Kinetics; Lysophosphatidylcholines; Membranes, Artificial; Permeability; Phosphatidylcholines; Phosphatidylethanolamines; Polyethylene Glycols; Potassium; Pseudomonas aeruginosa; Unilamellar Liposomes

2010
Protection of the membrane permeability barrier by annexins.
    Biochemistry, 2012, Dec-18, Volume: 51, Issue:50

    Topics: Amyloid beta-Peptides; Annexin A5; Annexin A6; Annexins; Arachidonic Acid; Calcium; Cell Membrane; Cell Membrane Permeability; Diglycerides; Fluoresceins; Humans; Islet Amyloid Polypeptide; Lipid Bilayers; Lysophosphatidylcholines; Lysophospholipids; Monoglycerides; Osmotic Pressure; Peptide Fragments; Spermidine; Unilamellar Liposomes

2012
Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Biochimica et biophysica acta, 2016, Volume: 1858, Issue:5

    Topics: Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Bacterial Proteins; Cell Membrane; Drug Compounding; Drug Liberation; Drug Resistance, Bacterial; Fluoresceins; Fluorescent Dyes; Hemolysin Proteins; Kinetics; Lipid Bilayers; Liposomes; Lysophosphatidylcholines; Myristic Acids; Phase Transition; Phosphatidylcholines; Phosphatidylglycerols; Staphylococcus; Staphylococcus aureus

2016